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Abstract   
 
We pursue a simple semi-classical particle-based picture of QED in which the electron is 

assumed to contain a point massless and chargeless core that interacts with the 
electromagnetic vacuum in ways that are not dissimilar to the manner in which small black 
holes may interact with photons. Modifications are made to obtain known properties of the 
electron including the presence of rest energy, Lamb shift, magnetic moments (both free 
and bound), charge, Larmor emission, and vacuum polarization.  The present study does 
not provide proofs but is rather an attempt to reverse-engineer the photon-electron and 
black-hole-electron interaction properties needed to match experimental observations. The 
ease by which many QED observables can be reproduced suggests further study of the 
presented framework may be warranted. Future detailed analysis of the exchange of long 
wavelength Hawking radiation between a pair of small black holes will be of particular 
interest.

I. Introduction 
 

Particle physics is viewed through the lens of quantum electrodynamics [1,2,3] (QED) and subsequent 
developments in quantum field theories which have led to the highly successful standard model. Despite 
our detailed understanding of particle physics, numerous long-standing mysteries remain. These include 
a reason for the existence of three generations of leptons and quarks; the corresponding fundamental unit 
of charge, e = 1.6021766341019 C [4], as expressed by the charged leptons; and the one-third and two-
thirds fractional charges expressed by the quarks. Here, we use a simple semi-classical particle-based 
framework to attack the mystery of the existence of the fundamental unit of charge. At the core of this 
problem is the fine-structure constant, , which controls the strength of the photon-electron interaction in 
QED. This central electromagnetic constant is, for standard QED, an inputted model parameter obtained 
by experiment,  = 1/137.035999206(11) [5]. For this number to be a theoretically calculable value, QED 
must be an approximation of a more fundamental theory. 

There have been many attempts to understand the numerical value of the fine-structure constant [6]. We 
believe it is logical that one needs to study a mechanism by which point-like non-charged particles can 
interact with the electromagnetic field, if one hopes to create a successful theory to explain why charge 
exists and why it has a fundamental unit. If such a mechanism existed, it might then be possible to infer 
various outcomes associated with this interaction. If any of the calculated outcomes have similarities with 
electromagnetism, then this would be a window into a possible calculation of the properties of charged 
particles not available via standard electromagnetic theory. The only simple mechanism that we are aware 
of where a point-like chargeless particle can interact with photons is the interaction of photons with black 
holes [7]. The idea of black holes as elementary particles is not new [8,9,10]. However, here we take the 
view that because black holes are objects amenable to statistical analysis, then elementary particles may 
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also be representable by a statistical picture and capable of particle evaporation. We have previously 
explored the possibility that photon exchanges (evaporation and absorption) between black holes might 
be related to charge [11]. The repulsive force between two identical black holes due to the classical 
exchange of their Hawking radiation can be used to define an effective charge of ~1019 C [11]. Despite 
serious issues with the classical Hawking-radiation-exchange concept, the proximity of the inferred charge 
to the fundamental unit of charge suggested further study was warranted. Here we expand the classical 
Hawking-radiation-exchange concept into a more quantum-like exchange which assumes electrons 
contain a massless and intrinsically chargeless point particle that interacts with the electromagnetic 
vacuum. The present work cannot be used to prove that elementary charged particles are small black holes. 
However, we can show that if point-like chargeless particles interact with photons in a way that is not 
dissimilar to the manner in which small chargeless black holes are expected to interact with photons, then 
several properties that give the appearance of a charged particle can be obtained. Given these comments, 
it is important to review the nature of black hole photon interactions (see section II). 

There is no accepted theory of the properties of small black holes with masses in the range of subatomic 
particles. Therefore, we cannot provide an analysis based on a well-established theory. We instead search 
for photon-electron and black-hole-electron interaction properties, inspired by the possible properties of 
micro black holes, which give the known properties of the electron. To do this we start with the properties 
of the electron known to us via QED. Standard QED is a quantum field theory that starts with fields and 
can be used to infer particle properties and interaction cross sections. We attempt to turn this the other 
way around and desire a particle-based picture with well-defined interaction cross sections that can be 
used to infer the properties of fields. In effect, we assume that there exists a black hole particle-based 
picture of quantum-electro-dynamics that is equivalent or nearly identical to the standard field-based 
approach known as QED. We then use this assumed near equivalence to infer the properties of small black 
holes. Therefore, in many instances in this paper it may appear that I make unsubstantiated claims about 
the properties of small black holes (and/or electron-photon and black-hole-electron interactions), but 
please interpret these as suggestions and read on to see that these claims are made because, within the 
framework of a semi-classical particle-based picture, they give outcomes that are the same as, or very 
similar to, that from standard QED. 

In section III we show an equivalence between the rate of L = 0 real photon emission from a black body 
and the emission rate of L = 0 virtual photons from a small black hole.  In section IV we show that these 
virtual emissions form a cloud surrounding each black hole and can be used to construct a description of 
the rest-mass energy and inertia of particles. In this picture, the properties of particles are not controlled 
by a charge and/or mass assigned to charged particles, but instead emerge due to the way the massless and 
chargeless particles (small black holes) interact with the electromagnetic vacuum state. By allowing some 
fraction of virtual-photon black-hole interactions to introduce particle recoils, a simple description of the 
Lamb shift is obtained in section V. These particle recoils allow for a simple semi-classical method by 
which point-particles can self-interact. The properties of this self-interaction are tuned in section VI to 
obtain a description of the magnetic moment of electrons (both free and bound). The self-interaction 
mechanism enables the exchange of virtual photons between a particle pair. The exchanging photons have 
thermal properties with an effective temperature controlled by the distance between the exchanging 
particles. This exchange, in turn, generates a force (see section VII) that can be used to define a 
fundamental unit of charge that is close to the known value from experiment, and can be used to obtain a 
new picture of Larmor emission from accelerating charged particles (see section VIII). In section IX we 
explore a new picture of vacuum polarization by expanding the photon-exchange mechanism mentioned 
above to include the exchange of virtual electrons (black holes) and correlated electron clusters between 
a real particle pair. These exchanges are also driven by a thermal-like evaporation process. The radial 
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dependence of the interaction potential, in this new model, is very close to that from vacuum polarization 
over ten orders of magnitude in relative potential change, across four orders of magnitude in distance 
down to length scales as small as one thousandth of a reduced Compton wavelength. Additional work is 
needed to confirm or negate the presented suggestions. We hope that the inferred virtual-photon particle 
interactions and virtual black hole particle interaction properties used here might illuminate the way 
forward to a new more complete theory. 
 
 

II. Emission and absorption of photons by black holes 
 
The emission and absorption of real photons by a Schwarzschild black hole (with mass M and radius rS) 

is well understood [7,12,13,14] and controlled by an energy and angular momentum dependent absorption 
cross section [14] 
 

𝜎 𝑀𝜔
2𝐿 1 𝜋𝑟

4 𝑀𝜔
𝑇 𝑀𝜔 𝑇 ƛ 2𝐿 1 𝜋ƛ  , 

 
(1)  

where the TL are transmission coefficients, which depend on both the angular momentum quantum number 
L, and the angular frequency of the photon . M can be converted into photon energy relative to the 
black hole’s temperature by multiplying by 8, i.e. /Tbh = 8M, where Tbh = ħc/4rS is the black hole’s 
temperature, and  is the photon’s energy with a reduced wavelength ƛ = ħc/. L = 0 absorption is not 
allowed for photons incoming from infinity [see summation from L = 1 to  in Eq. (1)], and likewise due 
to the connection between emission and absorption (via time-reversal symmetry), L = 0 emission to infinity 
is also forbidden. The transmission coefficients can be obtained by mapping the radial coordinate to the 
Wheeler coordinate x = r + 2Mln(r/2M  1), and solving the wave equation [14] 
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using an effective potential 
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The behavior of the TL is relatively easy to understand given that in geometrical optics a photon impact 
parameter of (27/4)1/2 rS ~ 2.6 rS ~5.2M (in units with c = G = 1) marks the transition from absorption to 
scattering, and therefore the TL are small for M < L/5.2 ~ 0.2L, i.e.  < 5LTbh (see Fig. 1). Above this 
photon energy the TL rise to approach unity at M ~ 0.2(L+1) as the TL for the next partial wave start to 
increase significantly above zero (see Fig. 1) We have independently confirmed the results of Crispino et 
al [14], and found that for scoping calculations it is acceptable to approximate black hole TL by 
 

𝑇 𝜔 ~
1

1
exp 𝐴 𝑀𝜔 /𝛿

𝑀𝜔

 ,   
 

(4)  

with the AL=1 to 5 = −0.0802, 0.3288, 0.5990, 0.8343, and 1.0546, respectively; and the L=1 to 5 = 0.0602, 
0.0418, 0.0367, 0.0353, and 0.0348, respectively. The corresponding TL and a are displayed in Fig. 1 and 
Fig. 2. Given the 1/2 falloff in the a(L) once the TL flatten off above M ~ 0.2(L+1), the absorption 
cross section for each partial wave peaks at M ~ 0.2(L+1/2) (see Fig. 2).  

As pointed out by Crispino et al, the total absorption cross section (summing over all partial waves), at 
the high frequencies, oscillates about the geometrical optics value of 0 = 6.75 rS

2 = 27M 2 (in Planck 
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units). Our results displayed in Fig. 2 are indistinguishable from those in figures 1 and 2 in Crispino et al 
[14]. Given the ratio of the total a() to 0 (see Fig. 2), it is straightforward to calculate the “real” photon 
emission power from a macroscopic black hole (M >> Planck mass, MP) via  
 

𝑃  𝑑𝜀
27𝑟

4 ℏ 𝑐
 𝜀
𝜎

 
𝜀 𝑑𝜀

exp 𝜀/𝑇 1
 . 

 

(5)  

To enable a direct comparison to a previous calculation of Page [13] we choose a black hole mass of M = 
5×1011 kg and get a photon emission power of 
 

𝑃 𝑀 5 10  kg,   ~ 7.38 10  
ergs

𝑠 ∙ 100 MeV
 
 𝜀
𝜎

 
𝜀/MeV

exp 𝜀/𝑇 1
 . 

 

(6)  

The corresponding power spectrum, using the a()/0 obtained from Fig. 2 is displayed in Fig. 3, and 
can be compared directly to the corresponding numerical calculation shown in Fig. 1 of Page [13]. The 
agreement between our calculation and that of Page, demonstrates that the calculation of the photon 
emission from an isolated macroscopic black hole is relatively straightforward, and was well established 
soon after the initial discovery of Hawking [7].  

 
Fig. 1. Black hole transmission coefficients, TL, versus photon frequency (see text). 

 
Fig. 2. Black hole total and partial-wave photon-absorption cross sections, a, versus photon frequency (see text). The 
geometrical optics value of 0 = 6.75rS

2 is displayed by the horizontal dashed line. 
 

In the limit of a zero-mass black hole (with an infinite temperature) the transition to non-zero 
transmission coefficients, at photon energies above  ~ 5LTbh, moves to inconceivably high energies for 
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the L  0 partial waves, and thus the corresponding transmission coefficients are zero for all conceivable 
energies. However, the transmission coefficients for the unphysical L = 0 emission stay at unity. One might 
therefore conclude that zero-mass black holes cannot interact with the electromagnetic field. However, in 
this paper we assume massless chargeless point particles can emit L = 0 photons as long as they are later 
self-absorbed or reabsorbed by another particle (see section VII). With L = 0 transmission coefficients 
equal to unity, as per Eq.s (2) and (3), the relevant interaction cross section is  = ƛ2. In this way, for 
small black holes, the relevant length scale is not the vanishingly small Schwarzschild radius, but instead 
the reduced wavelength of the L = 0 interacting photons. This is analogous to neutron-nucleus interactions 
where, for fast neutrons, the relevant interaction length scale is dominated by the geometrical size of the 
nucleus, while for thermal neutron energies the interaction length scale is set by the reduced wavelength 
of the L = 0 incident neutrons. This has profound implications for our understanding of small black holes, 
and will be expanded upon in following sections.  

 
Fig. 3. Photon power spectrum from a M = 5×1011 kg black hole versus photon energy,  (black curve: present results; gray 
circles: points read from Fig. 1 in the 1976 paper of Page [13]). The units have been chosen to facilitate a reader’s own direct 
comparison to Page.  
 

Another expected property of the interaction of light with black holes is stimulated emission [15]. 
Bekenstein and Meisels [15] have demonstrated strong similarities between the stimulated emission from 
atoms and black holes, with both having a probability f = exp(/T) of generating a stimulated emission 
following the associated interaction. The only significant difference appears to be that in the atomic case 
the stimulated emission travels along with the corresponding exiting stimulating photon, while in the black 
hole case the stimulated emission travels back along the path of the incident absorbed photon. In the limit 
of low-energy absorption on a small high-temperature black hole the stimulated-emission probability 
becomes unity. This emission process in conjunction with the L = 0 emission and self-absorption discussed 
in the previous paragraph, lends itself to the possibility that small black holes are surrounded by a cloud 
of virtual L = 0 photons. If electrons are assumed to have some of the properties of very small black holes 
then perhaps the surrounding cloud of virtual photons is related to the electron’s surrounding 
electromagnetic field; recoils associated with the absorption and emission of virtual photons could be 
associated with the Lamb shift; and the exchange of virtual photons between a pair of point-like chargeless 
objects might be the reason for the electrostatic force between electrons. These possibilities suggest a 
connection between quantum mechanics and black holes, and are expanded on in the following sections. 
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III.  L = 0 virtual-photon emission rate from a very small black hole 
 

The spontaneous photon emission rate from a black body can be obtained via transition state theory and, 
in the case of a spherical black body, be expressed as [16] 
 

𝑅 2
1
ℎ

2𝐿 1 𝑇 𝜀 exp 𝜀/𝑇 𝑑𝜀



.  
 

(7)   

The factor of two is to include both photon helicity (polarization) states. For macroscopic black bodies 
with a finite temperature, the high-energy cutoff, H, is set to infinity, while for small black holes we will 
see in the next section that a finite cutoff is needed to give a finite total particle mass. We define a very 
small black hole to be one where the energy stored within the event horizon is infinitesimally small 
compared to that of the electron’s rest mass. This smallness makes all the L  0 transmission coefficients 
zero for the relevant photon emission energy range,  < H, leaving only the L = 0 unphysical emissions (as 
discussed in the previous section), and a black hole temperature very large compared to H. The 
corresponding very small black hole photon-emission rate is 
 

𝑅
1
𝜋ℏ

𝑑𝜀
𝜀
𝜋ℏ

 .  
 

(8)  

As mentioned in the previous section, there are reasons why the emission represented by Eq. (8) cannot 
make it to infinity (i.e. cannot escape from an isolated particle). Some of these reasons can be partially 
satisfied by assuming that the L = 0 photon emission is only allowed to exist for a timescale of ħ/2 set by 
the time-energy uncertainty principle before self-absorption in the case of an isolated black hole; or before 
completing an exchange in the case of a black hole pair separated by a finite distance. We assume that the 
timescale of ħ/2 defines a fixed probability per unit time for the “disappearance” (self-absorption) of the 
outwardly going L = 0 virtual photon.  

To better understand Eq. (8) it is helpful to realize that all spontaneous emission processes can be viewed 
as emission stimulated by vacuum-virtual photons. The rate that vacuum-virtual photons interact with an 
isolated point particle can be obtained by multiplying the interaction cross section, ƛ2, by the number 
density of vacuum-virtual photons, 2d/2ħ3c3 [17], by the speed of light, c, giving 
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𝜋ℏ

𝜀
𝜋ℏ

 ,  
 

(9) 

in agreement with Eq. (8). Therefore, if each interaction of an L = 0 vacuum-virtual photon is assumed to 
stimulate the emission of an additional virtual photon as depicted in Fig. 4 (and later in Fig. 5) then the 
photon emission rate is as given by Eq.s (8) and (9). This partially justifies the suggestion presented here 
that the black hole stimulated emission process of Bekenstein and Meisels enables L = 0 vacuum-virtual 
photons to stimulate small black holes to emitted additional L = 0 stimulated-virtual photons with a 
production cross section of ƛ2, with an emission rate that is equivalent to the emission rate of L = 0 
photons from a black body. As already discussed, these stimulated-virtual photons cannot be allowed to 
escape from an isolated single particle. In the case of a small point-particle with a mass very much less 
than H, the above introduced stimulated emission will violate conservation of energy and would not be 
allowed if only classical physics is assumed. However, as discussed above, we assume that the time-
energy uncertainty principle allows the stimulated emission to exist for a timescale of  = ħ/2, before 
disappearing (in a semi-classical sense). We assume a stimulated-virtual photon generated by a particle’s 
interaction with an incident L = 0 vacuum-virtual photon is emitted anti-parallel to the incident photon as 
depicted in Fig. 4 (and discussed in the previous section). 
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Fig. 4. Depiction of a stimulated-virtual-photon emission generated by the passage of a vacuum-virtual photon within ƛ of a 
small black hole (point particle). The wavelength of the schematic photons is not to scale. 
 
 

IV.  Rest-mass energy of very small black holes 
 

Combining Eq. (9) with the stimulated-virtual-photon “disappearance” timescale of ħ/2, gives the 
additional average virtual-photon energy (above the virtual-photon vacuum ground-state energy) 
associated with the presence of an isolated very small black hole as 
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(10)  

The final step is obtained by setting the high-energy cutoff to H = 2mc2. There are effectively three 
possible choices for H. A value of zero would give the result that small black holes do not interact with 
photons. We reject this possibility for the sole reason that the outcomes would be boring. An infinite cutoff 
energy is rejected because it gives the unphysical result of an infinite particle energy. This leaves a finite 
cutoff energy as the only interesting choice, and we here choose H = 2mc2 because it generates the result 
of E = mc2 given at the end of Eq. (10). Here the mass m is not the mass of the small black hole being 
stimulated to emit, but rather the average energy in its surrounding cloud of stimulated-virtual photons 
divided by c2. We will soon explore the possibility that electrons contain a massless chargeless point 
particle surrounded by a cloud of stimulated-virtual photons. In this case, the electron’s mass is not directly 
related to the mass of the central point particle but is instead set by the average energy in the surrounding 
cloud, controlled by the high-energy cutoff, H. With this explanation, one could assume that the high-
energy cutoff is the more fundamental quantity that leads to a particle’s rest energy equal to the reduced 
cutoff energy, i.e. mc2 = H /2. This interpretation has no problem with point-like particles, unlike the 
storage of the rest energy in the electric field surrounding a classical point charged particle. We have 
assumed H operates as a sharp cutoff. This is likely unphysical, however, we apply the philosophy that if 
a simplistic approach appears to be adequate then we keep it until a more sophisticated one is needed. 

The reaction mechanism by which Eq. (10) gives the rest energy of a very small black hole is presented 
as a Feynman-like diagram in Fig. 5. Within this framework the particle’s rest energy is maintained by a 
stream of emissions each with a distribution of photon survival times. The average amount of energy 
contained in the stimulated emissions is mc2 [see Eq.a(10)] with an average time between emissions of 
ħ/2mc2. This timescale is reminiscent of the Zitterbewegung obtained via the Dirac equation [17]. A crude 
representation of a small black hole (particle) is depicted in Fig. 6. A “real” particle is more complex with 
a distribution of stimulated photon energies, each with their own randomly determined birth and survival 
times. Rare low-energy stimulated emission can probe regions much further away than ƛC. We here 
assume that the emission of each individual L = 0 stimulated-virtual photon, from an isolated particle, is 
in the form of a spherically symmetric outgoing wave that does not induce a recoil in the massless black 
hole. This will be modified in the next section to enable a description of the Lamb shift. 

stimulated emission

vacuum photon
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Fig. 5. Feynman-like diagrams of the proposed mechanism by which the rest energy of a very small black hole is stored in the 
surrounding cloud of stimulated-virtual photons generated by an interaction of the black hole with the vacuum-virtual photons. 
In each of the diagrams (a) and (b) there is only a single vacuum photon and a single stimulated emission. Diagram (a) depicts 
the direction reversing nature of the stimulated emission. Diagram (b) is an attempt to illustrate the L = 0 nature of both the 
initial interaction and the following stimulated emission with left and right going photons in the plane of the page. The dashed 
ellipses signify the isotropic nature of the L = 0 ingoing and outgoing vacuum photon and outgoing stimulated emission. 

 
Fig. 6. A crude representation of a very small black hole (particle). Only the average stimulated-virtual-photon emission energy 
is depicted with these emissions travelling their average distance, with an average time of ħ/2mc2 between emissions. This 
gives an effective particle size of ~ ƛC = ħ/mc. The stimulating vacuum-virtual photons are not shown. A real particle is more 
complex (see text). 
 

The concept that the rest-mass energy of a particle is contained within a surrounding cloud of stimulated-
virtual photons automatically gives the correct average relativistic energy and momentum (and thus 
inertia) as a function of the particle’s velocity, via the Doppler shift of the stimulated-virtual photons 
associated with a particle’s velocity. As a quick and simple demonstration of this effect, we consider Fig. 
6 in an inertial reference frame where the particle is moving with a constant velocity v. In this reference 
frame, the average  = mc2 photon emissions parallel and anti-parallel to the direction of the velocity are 
Doppler shifted to energies of (v)mc2(1+v/c) and (v)mc2(1v/c). The average of these energies gives the 
energy of a particle as E = (v)mc2. Similarly, averaging the forward and backward photon momenta gives 
the particle momentum p = (v)mv. It is a simple exercise for the reader to see that these results are not 
changed by the integration over the continuous range of allowed photon energies and emission angles in 
the center-of-mass frame. An astute reader will know this is self-evident and requires no proof. 
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A semi-classical picture of why particles can “erupt” from the vacuum for a short time period is also 
obtained. This is because of the interpretation that the rest energy is stored in the surrounding cloud of 
stimulated-virtual photons, and not in the black hole (point-like particle) in the middle of the cloud. If a 
naked black hole (point-like particle) is born at time t=0 (without its cloud of stimulated-virtual photons) 
it will take a finite timescale for the first vacuum-virtual photon to find the new particle and start the 
generation of the surrounding virtual-photon cloud. This timescale is the inverse of the rate given by Eq. 
(9) and is equal to ħ/H = ħ/2mc2, in agreement with the timescale that a particle anti-particle pair, with 
total mass m, can pop into existence before disappearing back into the vacuum as controlled by the time-
energy uncertainty principle. This is not surprising, because the time-energy uncertainty principle is one 
of the inputted assumptions. What is of interest is that a simple semi-classical picture emerges, and that 
this picture is only self-consistent with the time-energy uncertainty principle if the high-energy cutoff is 
H = 2mc2. 

Another potentially pleasing possibility of the presented framework is that black holes cannot be smaller 
than the Planck length [18]. Macroscopic black holes with masses larger than the Planck mass have a 
Schwarzschild radius of 2m (in Planck units), while microscopic black holes with masses less than the 
Planck mass have an effective radius of ~ ƛC/2 (see Fig. 6) ~ 1/2m (in Planck units). These macro- and 
microscopic radii suggest a black hole radius of ~ 2m + 1/2m with a minimum radius of about two Planck 
lengths, at a mass of about one-half a Planck mass. In this picture macroscopic black holes store their rest 
energy inside the event horizon, while microscopic black holes store their rest energy in a surrounding 
cloud of virtual photons. This implies that a pair of macroscopic black holes will interact primarily via 
gravity, while a pair of microscopic black holes will interact primarily through their surrounding clouds 
of virtual photons. 

Much of the rest of this manuscript is an attempt to support the idea that L = 0 photon exchanges between 
a pair of chargeless small black holes (particles) can generate an electromagnetic force between them. 
This force can be used to estimate the numerical value of the fine-structure constant and thus the 
corresponding fundamental unit of charge, e = (ħc4π0)1/2. Before estimating the fine-structure constant 
it is important to first constrain other details that appear important to a semi-classical understanding of 
virtual-photon black hole (particle) interactions by modifying the above presented picture to obtain several 
electron-like properties.  

 
 

V. Hydrogen Lamb shift 
 

According to the Dirac equation, the hydrogen 2s1/2 and 2p1/2 levels are degenerate if a pure inverse-
square-law Coulomb force is assumed to operate between the electron and the proton. There are several 
reasons why the true interaction is not a perfect inverse-square law at small distances. These include the 
finite size of the proton, vacuum polarization associated with virtual electron-positron pairs [19], and a 
possible intrinsic fuzziness of the electromagnetic interaction involving electrons on small length scales. 
In 1947 Lamb and Retherford [20] demonstrated that the hydrogen 2s1/2 level sits ~1000 MHz above the 
2p1/2 level. Bethe showed in the same year [21] that this observation was predominantly due to the 
electromagnetic vacuum interacting with the electron, causing an intrinsic fuzziness in the electromagnetic 
interaction. A more modern measurement of the Lamb shift is 1057.85 MHz and is consistent with QED 
calculations [22].  

From the Darwin term in the Dirac equation it follows that the hydrogen Lamb shift, to lowest order, is 
[17] 
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(11) 

where r2 is the root-mean-squared spread in the electron’s location associated with its interaction with 
the electromagnetic vacuum. Eq. (11) can also be obtained via non-relativistic Schrödinger quantum 
mechanics using first-order perturbation theory. 

 
Fig. 7. Feynman-like diagrams for the reaction mechanism used to obtain Eq.s (12) and (13) (the Lamb shift). These diagrams 
are similar to Fig. 5 but divide the vacuum-photon particle interaction into a recoil-less interaction (a) and a recoiling interaction 
(b). In the recoiling interaction an isotropic stimulated-virtual photon is emitted at the end of the recoil before the electron’s 
return to its original location. To keep the total interaction cross section of ƛ2 and keep the particle’s rest mass from changing 
from the result given in the previous section, the recoil-less reaction cross section is reduced to (1)ƛ2, to accommodate the 
recoiling interaction cross section of ƛ2.  
 

Here we modify the photon-electron interaction as discussed above (see Fig. 4 and Fig. 5) in a manner 
that does not change previously obtained results but leads to a simple description of the hydrogen Lamb 
shift. We make the ansatz that the interaction depicted in Fig. 4 and Fig. 5 is divided into recoil-less and 
recoiling interactions with cross sections of (1)ƛ2 and ƛ2, respectively, with the fine-structure 
constant  being the recoiling fraction. This modification to the photon-electron interaction is summarized 
in Fig. 7 and leads to a fuzziness in an electron’s location due to its interaction with the vacuum state. The 
recoil-less interaction is unchanged from Fig. 5, except for a small drop in its cross section [see Fig. 7(a)]. 
For the recoiling interaction, the incident vacuum-virtual photon of energy  is assumed to, at first, be 
absorbed by the electron, violating energy conservation for a small time period of ħ/, while maintaining 
conservation of momentum with a particle recoil velocity v = /(mc). To re-establish conservation of 
energy after the short time period of ħ/, we assume the absorbed vacuum-virtual photon is returned to 
the vacuum and the electron is returned to its original location as though the recoil interaction had not 
occurred [see Fig. 7(b)]. We are assuming the acts of vacuum-photon absorption and emission back into 
the vacuum each take a timescale of ħ/2 to complete, i.e. a combined timescale of ħ/. This gives an 
average recoil distance of r = vħ/ = ħ/mc = ƛC. This recoil distance is obtained here in the non-relativistic 
limit. However, the same result is obtained with relativistic kinematics if the timescale of ħ/ is assumed 
to apply in the reference frame of the recoiling particle. The emission of the stimulated-virtual photon 
associated with the recoiling interaction is assumed to be isotropic and to occur at the end of the recoil, 
but before the electron’s return to its pre-absorption state as depicted in Fig. 7(b). This assumption is not 
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required to give the Lamb shift but is introduced here because it leads to a reproduction of the known 
anomalous magnetic moment of the electron in the next section. 
 

The electron blurring mechanism depicted in Fig. 7 naturally leads to higher-order corrections not 
considered here. For example, while in the act of recoiling, an electron can interact with another 
(independent) incident virtual-vacuum photon. These overlapping recoil events will be rare. In analogy to 
higher-order corrections associated with the magnetic moment of the electron, we assume the next higher-
order interactions will modify results by an amount proportional to ~/ [23]. This is a recurring theme 
in this paper. 

Given the probability per unit time to complete the combined absorption and re-emission process is 
assumed to be /ħ (as discussed above) then there will be an exponential ensemble of recoil distances with 
probabilities of exp(r/ƛC), and a mean value of ƛC. For a given recoil distance r, the rms spread of the 
electron’s location averaged along its path is r2/3 (assuming a constant recoil velocity), with a recoil time 
of rmc/. Combining these effects gives a rms spread in an electron’s location due to the recoils associated 
with the absorption and re-emission of vacuum-virtual photons of 
 

𝛿𝑟 𝜀

𝑟
3
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𝑟 exp
𝑟
ƛ
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𝜋

𝑑𝜀
𝜀

. 

 
 

(12) 

This is the same result obtained by Welton [24,17] using a wave-based picture of the electromagnetic 
vacuum, and partially justifies the presented particle-based description with an electron-recoil fraction , 
and the total absorption and re-emission timescale of ħ/ which causes a delay of the same time between 
the initial interaction and the eventual emission of the stimulated-virtual photon, as summarized in Fig. 
7(b). Integrating Eq. (12) over the energy of the relevant vacuum-virtual photons gives the result  
 

𝛿𝑟
2𝛼ƛ
𝜋

𝑑𝜀
𝜀

. 
 

(13) 

To obtain a finite result using Eq. (13) there need to be both low- and high-energy cutoffs. A possible 
value for the high-energy cutoff is discussed above (H = 2mc2). The nature of the Lamb shift is such that 
the rms spread of the electron only significantly affects the energy of s-state electrons due to their non-
negligible probability of being within ~ ƛC of the proton, where the absolute value of the electron’s 
potential energy is ~mc2. This is the value of the traditional Lamb-shift low-energy cutoff, L=mc2, 
used in other semi-classical descriptions of the Lamb shift [17]. We choose to use the same value here 
and obtain  
 

𝛿𝑟 ~
2𝛼ƛ
𝜋

𝑑𝜀
𝜀

~
2𝛼 ln 2𝜋/𝛼 ƛ

𝜋
   and   ∆𝐸 ~

𝛼  ln 2𝜋/𝛼
6𝜋

 𝑚𝑐  ~ 1000 MHz. 
 

(14) 

To be clear, only plausibility arguments are used here (not proofs) and as with many semi-classical 
approaches it is up to the reader to decide if the level of agreement with experiment indicates some truth 
in the used assumptions or is simply wishful thinking by the author. However, the presented semi-classical 
description divides the physics of the Lamb shift into several relatively easy to understand steps including: 
(1) an L = 0 interaction between vacuum-virtual photons and electrons, with a cross section of ƛ2; (2) 
multiplied by the probability , that this interaction induces an electron recoil; and (3) with a recoil 
timescale of ħ/ associated with the time required to both absorb and then re-emit the vacuum-virtual 
photons. These assumptions are not the only semi-classical particle-based scheme capable of giving the 
Lamb shift. From an array of different schemes that give the same results, we chose to use the one that 
can be represented by the simplest Feynman-like diagram. 
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VI. Anomalous magnetic moment of the electron 

 
As a heads up to the reader, this section is long, possibly tedious, and contains several unorthodox 

assumptions to enable the presented particle-based picture to match the known magnetic properties of the 
electron.  The reason for the detailed analysis of magnetic moments in this section is not to show that the 
presented particle-based picture is in agreement with the magnetic properties of the electron, but that 
within this picture we can constrain the properties of stimulated-virtual-photon electron self-absorptions 
so we can apply these nearly unchanged to the calculation of photon exchanges between an electron pair 
in the next section. In this section, the length scale of near-field effects is adjusted to give the anomalous 
magnetic moment of free electrons, and a self-interaction high-energy cutoff is adjusted to give the correct 
dependence of the magnetic moment of electrons, in hydrogen-like atoms (and ions), on the atomic 
number of the nucleus. 

To obtain a simple picture of the anomalous magnetic moment of the free electron, we are at first guided 
by the fact that in QED the anomalous magnetic moment is caused by the emission and reabsorption of 
virtual photons. Within the framework presented here, a similar-looking process can be obtained by 
assuming that the stimulated-virtual photon emission at the end of the Lamb-shift-related recoil can be 
self-absorbed by the same electron after its jump back to its original location (see Fig. 8). We assume the 
cross section for this self-absorption is ƛ2 if the distance between the photon-birth and self-interaction 
locations d is very much larger than ƛ, but with a new high-energy self-interaction cutoff, S < H, that is 
influenced by the state of the electron, and more specifically by how it is interacting with any nearby 
particles. The corresponding self-absorption probability is PS = ƛ2/4d2 for photons with energies < S. 
We assume the self-absorption high-energy cutoff S is inversely proportional to the size of the system 
within which the electron is operating. Therefore, free and/or quasi-free electrons in a macroscopic trap 
have a very small self-absorption high-energy cutoff. Inspired by Bekenstein and Meirels’ work on black 
holes we assume the self-absorption of a stimulated-virtual photon stimulates the generation of a 
stimulated-virtual photon that retraces the path of the incident stimulating photon (see Fig. 8).  

 
Fig. 8. Feynman-like diagram for the reaction mechanism used here to obtain a simple representation of the anomalous 
magnetic moment of a free electron. (a) Almost the same diagram as shown in Fig. 7(b). The only difference is that the 
stimulated-virtual photon emitted at the end of the electron recoil (from point A) “finds” the electron soon after its “return” to 
its pre-recoil location (at point B) and is self-absorbed. This absorption generates a direction-reversed stimulated emission. 
Straightening out the electron’s path gives the diagram to the right (b). Removing the ingoing and outgoing virtual photons 
gives the standard Feynman diagram for the anomalous magnetic moment. 
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Given the exponential distribution of Lamb-shift related recoil distances (see the previous section), the 
probability that a stimulated-virtual photon emitted at the end of the recoil is self-absorbed at point B (see 
Fig. 8), can be expressed as 
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(15) 

This can be further simplified by switching to energy and length in units of mc2 and ƛC, giving 
 

𝑃
1

4𝑥 𝜀
exp 𝑥

𝑑𝑥 𝑑𝜀
𝜀

 . 
 

(16) 

This equation gives the unphysical result of an infinite probability due to the 1/x2 and 1/ 2 terms. This 
situation can be rectified by the realization that near-field effects will introduce an effective low-energy 
cutoff by modifying the absorption cross section for photons “falling” towards an electron from a finite 
starting distance d.  

In the case of the communication between classical dipole antennas, the power exchange can be obtained 
using the far-field approximation when the antenna separation distance is more than a few times the 
physical dimension of the antennas. However, near-field effects start growing rapidly as the antenna 
separation decreases through twice their physical size. Experiments indicate the near-field effect for a pair 
of classical dipole antennas is of the form [25] 
 

𝑃 𝑑, 𝛿  ~ 1 exp
𝑑
𝛿

∙ 𝑃 𝑑 ,   
 

(17) 

where P(d,) is the power exchange between two antennas separated by a distance d; P(d) is the far-field 
power exchange; fnf = (1exp(d/)) is the near-field correction with the length scale   a little larger than 
the size of the antennas [25]. For the self-absorption of L = 0 stimulated-virtual photons, the far-field self-
absorption cross section of ƛ2 for d >> ƛ and  < S, is consistent with an effective semi-classical antenna 
size of ~ ƛ. In analogy with classical dipole antennas we suspect the L = 0 self-absorption cross section to 
be of the form fnfƛ2, with the near-field correction factor making a transition from unity at distances more 
than a few ƛ, to zero at length scales much less than ƛ. But what are the details of this transition? 

With d >> ƛ an electron pair must act as two independent interaction sites. When d is much less than ƛ 
the electron pair will behave as a collective unit. Near-field effects, in the case of an electron pair, are 
depicted in Fig. 9. An incident vacuum photon interacts with an electron pair as a collective unit, in Fig. 
9(a), generating a stimulated-virtual photon that exits from the pair. In this case the stimulated photon is 
not available for an exchange between the individual electrons as the interaction only sees the pair as a 
collective unit. An incident vacuum photon interacts with the electrons as independent units, in Fig. 9(b), 
generating stimulated-virtual photons that are emitted from the individual electrons. In this case the 
stimulated photon is available for an exchange between the individual electrons in the pair. The near-field 
factor, fnf, reduces the interaction cross section for an incident vacuum-virtual photon to interact with a 
given electron (as a single unit) due to the presence of a nearby partner. Similarly, the cross section for 
the corresponding stimulated emission to interact with the partner electron is also reduced by the same 
factor fnf. The total interaction cross section between a vacuum-virtual photon and an electron pair is the 
collective interaction cross section [see Fig. 9(a)], plus twice the individual interaction cross section [see 
Fig. 9(b)], and must be 2ƛ2. This is necessary to keep the proposed electromagnetic interaction, in the 
next section, a simple two-body force. 
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Fig. 9. A depiction of near-field effects associated with an electron pair. (a) A vacuum-virtual photon with a reduced wavelength 
larger than the pair’s separation distance interacts with the pair as a collective unit generating a stimulated-virtual photon that 
exits from the pair. (b) A vacuum-virtual photon with a reduced wavelength smaller than the pair’s separation distance interacts 
with the electrons as individual units generating stimulated-virtual photons that can be exchanged with the other particle.  

 
We make the ansatz that the transition from independent electrons to collective behavior is governed by 

the overlap of harmonic-oscillator ground-state wave functions (Guassians) 
 

 𝑟    exp
𝑟

2𝑎 ƛ
 , 

 

(18) 

with the photon-electron interaction probability per unit volume proportional to 2. The constant “a” 
scales the spatial extent of the interaction wave function relative to ƛ, and will soon be determined by the 
magnetic moment of the electron (to second order) in conjunction with some other assumptions. We 
further assume that the cross section for either of the electrons, in a pair, to interact with a photon as a 
single unit is given by 
 

𝑓 ∙ 𝜋ƛ    �̃�  �̃� 𝑑 𝑑𝑟 𝜋ƛ 1 exp
𝑑
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(19) 

 

The corresponding cross section for a single photon to interact with both electrons as a collective pair then 
has to be  
 

𝜎 2𝜋ƛ exp
𝑑

2𝑎ƛ
,   

 

(20) 

as required by the above discussion of the total interaction cross section. Notice that for d << ƛ an electron 
pair behaves as a collective unit; for d >> ƛ the electrons in a pair behave as separate (individual) units; 
and the constant “a” controls the length scale for the transition between these two limiting cases. Including 
the near-field effects as expressed in Eq. (19) into Eq. (16) leads to the finite result 
 

𝑃 1 exp
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4𝑥 𝜀 𝜀
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(21) 

We have assumed, in the case of an isolated electron, that the initial interaction towards the bottom of Fig. 
8(a) has the far-field cross section of ƛ2 multiplied by the recoil fraction , while the self-absorption 
cross section at point B needs to be near-field corrected due to the closeness of point A. For a very low-
energy electron (in a large macroscopic trap), we set the cutoff energy S to be very small, and rewrite Eq. 
(21)  

electron pair (a) electron pair (b)
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(22) 

The cancelation of length-scale and energy terms makes the self-absorption probability very insensitive 
to the properties of low-energy electrons. This is a requirement for the existing model to be consistent 
with experiment. We make the additional ansatz that the self-absorption of a stimulated-virtual photon by 
an isolated electron and the subsequent direction-reversed stimulated emission, at point B in Fig. 8, 
enables the generation of a magnetic moment of one Bohr magneton, B, in the direction of the electron’s 
spin for a time period m = ħ/S; and this magnetism is in addition to the standard intrinsic magnetic 
moment associated with the Dirac equation. We have no strong arguments for these assumptions other 
than invoking them gives the desired result presented below. However, as weak plausibility arguments, 
the choice of a particle magnetic moment of one Bohr magneton feels natural because a charged particle 
with a single unit of orbital angular momentum generates one Bohr magneton; and the self-absorption 
magnetic generation time of m = ħ/S may be related to the Zitterbewegung timescale of ħ/2mc2 = ħ/H 
but with the high-energy cutoff H replaced by the self-absorption high-energy cutoff, S. 

As discussed above, the rate of stimulated-virtual-photon emission following a Lamb-shift related recoil 
is H/(ħ). Only S/H of these emissions are available for a self-absorption with 1/(4a)2 of these self-
absorption attempts being successful. Including the magnetic-moment generation time introduced above, 
the average anomalous magnetic moment of the free electron is 
 𝑔 2

2
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1
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∙ 1 ∙
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𝜀

𝛼
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(23) 

This can be made to agree with second-order QED by setting a = (π/8)1/2 = 0.626657… . This corresponds 
to a self-absorption probability of PS = 1/2. 

It may appear as if unjustified assumptions have been made to generate the correct answer. However, 
the proposed reaction mechanisms can be tested by the calculation of their additional consequences as 
done below. Before moving on to a calculation of the fine-structure constant we constrain the self-
absorption high-energy cutoff, S. We do this in the next subsection via a study of the change in the 
magnetic moment associated with electrons in hydrogen-like atoms (ions) as a function of the charge and 
mass of the atomic nucleus. 
 

VI.A    Magnetic moment of the electron in hydrogen-like systems 
 

The interplay between the far-field interaction cross section and near-field effects gives the result that, 
even in the limit as the size of the electron recoil goes to zero, 1/2 of the stimulated emissions with   
S are self-absorbed by an isolated electron [See Eq. (22) with a = (π/8)1/2 ]. This leads to the interesting 
possibility that 1/2 of the stimulated emissions following recoil-less interactions with   S are also self- 
absorbed by an isolated electron, followed by a direction-reversed stimulated emission. If true, then there 
are four ways by which a vacuum-virtual photon, with   S, can interact with an isolated electron (see 
Fig. 10). The total rate of self-absorptions would then be S/ħ divided by 2 with a fraction  following 
recoils associated with the Lamb shift, and a fraction 1 following recoil-less interactions with vacuum 
photons (see Fig. 10). If the stimulated-virtual photon self-absorptions that follow the Lamb-shift-related 
recoils generate magnetism then so might all self-absorptions, including those following recoil-less 
interactions. However, all of the magnetic moment of the electron has been accounted for with the intrinsic 
value from the Dirac equation plus the anomalous value from the previous subsection. We “solve” this 
problem by making the ansatz that any magnetic moment generated by the self-absorptions following 
recoil-less vacuum-photon interactions is a part of the intrinsic magnetic moment associated with the 
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Dirac equation. This assumption is unorthodox and gives a breakdown of the magnetic moment of the 
free electron as displayed in Fig. 11. 

 
Fig. 10. A summary of the four different ways in which a vacuum-virtual photon, with  < S can interact with an electron with 
the corresponding event cross sections, . Notice that the total interaction cross is still ƛ2. The event classes on the right induce 
magnetism (see text). The event classes on the bottom involve an electron recoil. 

 
Fig. 11. Different components of the magnetic moment of the free electron. 
 

Within this framework, B/2 of the magnetic moment is due to self-absorptions of stimulated-virtual 
photons (see Fig. 11). This component can be divided into two parts. For free electrons, these are B/2 
and (1)B/2. The B/2 component is associated with the self-absorptions following the 
displacement of the electron that causes the Lamb shift, and is the anomalous magnetic moment in excess 
of the intrinsic magnetic moment associated with the Dirac equation. The (1)B/2 component is also 
initiated by self-absorptions, but associated with interactions with no consequence on the Lamb shift, and 
assumed to be a part of the intrinsic magnetic moment of the free electron as obtained by the Dirac 
equation. The B/2 component varies with the size of the electron trap via the self-absorption high-
energy cutoff, S. This dependency on the state of the electron can be determined via Eq. (21). It is 
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reasonable to assume that the (1)B/2 component has the same dependence on the size of the electron 
trap. 

The self-absorption probability of PS = 1/2  from Eq. (22) with a = (π/8)1/2 is obtained via the 
assumption that the electron is free or, at least, in a large macroscopic trap. Hydrogen-like atoms (ions) 
can be viewed as microscopic traps. Based on the discussion in the previous subsection, the size of the 
self-absorption high-energy cutoff will increase with a decrease in the size of an electron’s orbital, and 
thus increase with the atomic number of the nucleus of a hydrogen-like atom. A representation of the 
electron’s magnetic moment as a function of the atomic number of the nucleus in a hydrogen-like atom 
can be obtained by assuming the high-energy cutoff for the stimulated-virtual-photon self-absorption cross 
section is given by the energy of a photon whose wavelength is the return distance from the electron to 
the associated partner particle and back; i.e. S = hc/2d = ħc/d. This value can be partially justified 
because the magnetic generation time introduced in the previous subsection and the Zitterbewegung 
timescale are both given by ħ divided by the corresponding energy cutoff, and thus energy cutoffs 

appear to be ħ divided by a relevant timescale. For a two particle system it seems reasonable that the 
relevant timescale would be d/c. For electron-nucleus ground-state systems, we replace d with the 
corresponding Bohr radius, giving S = Zmc2. Incorporating this into Eq. (21) gives 
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(24) 

Including the other assumptions discussed above, and the fact that a finite nuclear mass, M, modifies the 
distance between the electron and the nucleus by a factor of 1+m/M, Eq. (24) translates into a Z 
dependence of the magnetic moment of the electron in hydrogen-like atomic ground states relative to the 
Bohr magneton of  
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(25) 

in agreement with standard theory to the same order in  and m [26]. Higher-order effects [27] and 
subtleties associated with details in the shape of the electron wave function [28] modify Eq. (25) and give 
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(26) 

Of course, even higher-order corrections exist [29]. Measured magnetic moments of free and bound 
electrons are compared to theory and the model presented here in Table I. The results listed in Table I 
partially justify the assumptions used in this section. However, the reader should remember that the used 
assumptions were not derived by first principles, but adjusted to reproduce known experimental results. 
These assumptions include: (a) photon-electron interaction near-field corrections are governed by the 
overlap of ground-state harmonic-oscillator wave functions with the spatial extent of these wave functions 
adjusted to give the known anomalous magnetic moment of the free electron; (b) self-absorptions generate 
one Bohr magneton for a timescale of m = ħ/S; (c) for free electrons we take the limit as S goes to 
zero, while for two-particle ground-state systems we set S = ħc/d and set the separation distance d to 
the corresponding reduced-mass corrected Bohr radius; and (d) a constant intrinsic (system size 
independent) magnetic moment of [1(1)/2]B, not associated with self-absorptions, was adjusted to 
give results in agreement with second-order QED (see Fig. 11). 
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Table I. A comparison of measured and calculated magnetic moments of free and bound electrons.  
Magnetic moments Experiment Theory [29] Eq. (25) 
free electron (B) 1+1159.52181×10−6 [4] 1+/2 1+/2 

H/free 1−17.709(13)×10−6 [27] 1−17.694×10−6 1−17.711×10−6   
D/H 1−7.22(3)×10−9 [30] 1−7.24×10−9 1−9.61×10−9   
T/H 1−10.7(15)×10−9 [31] 1−9.7×10−9 1−12.8×10−9   

4He+/free 1−70.87(30)×10−6 [32] 1−70.91×10−6 1−70.90×10−6   
12C5+(B) 1+520.798(2)×10−6 [33] 1+520.795(1)×10−6 1+520.39×10−6   

  Eq. (25) only includes effects to second-order (see Fig. 8) and thus these ratios are obtained using a free value of 1+/2.  
 As discussed in the text, Eq. (25) only includes the size of the bound-electron orbitals. Subtleties in the details of the shape 
of the electron’s wave function modify the nuclear mass correction coefficients by a factor of ¾ [28]. Including this factor 
gives agreement with experiment. 
 For the reason given in , to better compare this value directly to the experimental value we have multiplied Eq. (25) by the 
ratio of the electron’s free magnetic moment of 1.00115952181 B to the corresponding value from second-order QED. 
 
 

VII. Exchange of virtual photons between an electron pair 
 

Given that electrons are indistinguishable, the self-absorption process from the previous section (as 
illustrated in Fig. 8) enables the stimulated-virtual photon emission from one electron to interact with a 
nearby separate partner electron as depicted in Fig. 12.  

 
Fig. 12. Feynman-like diagram depicting the exchange of a stimulated-virtual photon between an electron pair. This is similar 
to Fig. 8, except here the stimulated-virtual photon emitted from point A interacts with a separate partner electron instead of 
with itself. As in the case of the self-absorption, the interaction at point B is assumed to stimulate a direction-reversed photon 
that starts at point B and travels back towards the partner electron. If this photon reaches the partner particle then an additional 
direction-reversed stimulated emission occurs which sends a photon back towards the other particle. This photon rattling is 
assumed to continue until one of the exchanging stimulated-virtual photons “disappears” via the time-energy uncertainty 
principle. Additional complexities are discussed in the text.  

 

The rate of stimulated-virtual photon emission (with  < S) from point A (in Fig. 12), if electron (a) is 
isolated, is as given previously, d/ħ (see Fig. 5). The presence of the partner electron (b) at a finite 
distance d, reduces the emission rate of stimulated-virtual photons that are capable of making an exchange 
to point B, by the near-field reduction factor, fnf, as discussed in the previous section and depicted in Fig. 
9. The probability that a stimulated-virtual photon emission from point A (in Fig. 12) interacts at point B 
is given by 
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p

𝑓 𝜋ƛ
4𝜋𝑑

exp
2𝜀
ℏ

𝑑
𝑐

𝑓 𝜋ƛ
4𝜋𝑑

exp 𝜀/𝑇 ,   
 

(27) 

with an effective exchange temperature Tex = ħc/2d. As in the case of the self-absorptions introduced in 
the previous section [see Eq. (21)], the fnf term reduces the interaction cross section of the first stimulated-
virtual photon with the partner electron at location B, due to the proximity of the partner particle. The 
exponential factor in Eq. (27) takes into account the probability that the stimulated-virtual photon 
“disappears” during the attempted exchange across the distance d. This term was not included in the 
previous section on self-absorptions because, in that case, the corresponding distances were small, of the 
order of ƛC. This sets the corresponding exp(−/Tex) terms to essentially unity in the self-absorption case. 
Given Eq. (27) one might, at first, think that the rate of stimulated-virtual photon exchange from point A 
to point B (see Fig. 12) is 
 

R 𝜀 𝑑𝜀
𝑓 𝑑𝜀
𝜋ħ

 
𝑓 𝜋ƛ
4𝜋𝑑

exp 𝜀/𝑇
𝑓  ħ𝑐
4𝜋𝑑 𝜀

 exp 𝜀/𝑇 𝑑𝜀 . 
 

(28) 

However, we assume (at first) that the stimulated-virtual photon direction reversal following an exchange 
is “perfect” and thus the stimulated-virtual photon generated by electron (b), by an incident photon from 
electron (a), will automatically be heading in a direction to re-find particle (a), at least in the limit of low 
particle acceleration, as depicted in Fig. 12. With this picture the stimulated-virtual photon exchange rate 
from electron (a) to electron (b), due to vacuum-virtual-photon interactions that occurred a time t = d/c 
earlier than point A (see left hand side of Fig. 13) is given by  
 

R 𝜀 𝑑𝜀
𝑓  ħ𝑐
4𝜋𝑑 𝜀

 exp 𝜀/𝑇 𝑑𝜀.   
 

(29) 

Similarly, the exchange rate of stimulated-virtual photons from electron (a) to electron (b), due to vacuum-
virtual-photon interactions that occurred a time t = 2d/c earlier than point A (see right hand side of Fig. 13) 
is given by  
 

R 𝜀 𝑑𝜀
𝑓  ħ𝑐
4𝜋𝑑 𝜀

 exp 𝜀/𝑇 𝑑𝜀.    
 

(30) 

The continuation of this exchange sequence gives the total stimulated-virtual-photon exchange rate from 
an electron to a partner electron as  
 

R 𝜀 𝑑𝜀
𝑓  ħ𝑐
4𝜋𝑑 𝜀

  
𝑑𝜀

exp 𝜀/𝑇 1
.   

 

(31) 

Notice the introduction of the Planckian factor.  
The continuation of the initiating photon at point A on the left hand side of Fig. 13 following the first 

exchange enables the original stimulated-photon emission from electron (b) to attempt to find a possible 
third electron. This is necessary for the electromagnetic interaction proposed here to give a simple two-
body force. The interaction of an exchanging stimulated-virtual photon with an electron is depicted in Fig. 
14. The probability for the exchanging photon to continue on after its interaction is P =1−exp(−/Tex) = 

1−exp(−2d/ƛ). This is not an assumption, but a requirement to cause there to be one continued exchanged 
photon (on average) per initial exchange initiated by a vacuum-virtual photon. This enables the number 
of stimulated photons that exit a pair of electrons, in search of a possible third particle, to be independent 
of the spacing between the electron pair. This is needed to keep the proposed electromagnetic interaction 
a simple two-body force. Notice the similarity of the exchanging photon’s interaction (in Fig. 14) to the 
virtual-vacuum photon’s interaction with a particle in Fig. 5.  In the limit as d   these two interaction 
classes became identical. Also, notice that in the limit as d  0, the probability that the initiating stimulated 
photon continues on its way becomes zero. This is consistent with Fig. 8 where there is no continuation 
of the stimulating-virtual photon towards the top left because, in this case, the distance d is very small. 
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Fig. 13. Two Feynman-like diagrams depicting the exchange of stimulated-virtual photons between an electron pair. These 
diagrams are essentially the same as Fig. 12, but in the left diagram the initial stimulated-virtual photon is generated by a 
vacuum-virtual-photon interaction with electron (b) at time d/c before the time of the emission from point A. In the right 
diagram the initial stimulated-virtual photon is generated by a vacuum-virtual-photon interaction with an electron (a) at time 
2d/c before the time of the emission from point A.  

 
Fig. 14. The interaction of an exchanging stimulated-virtual photon with an electron. Here the stimulated direction-reversed 
photon is assumed to be generated with unity probability. The probability, P =1−exp(−/Tex), that the exchanging photon 
continues is a requirement needed to keep the proposed electromagnetic interaction a simple two-body force (see text). 
 

We are now in a position to calculate the repulsive force between two electrons. In the earlier section 
on the rest mass of an isolated electron, where spherical symmetry was invoked, the emission of 
stimulated-virtual photons was assumed to impart no momentum to the emitting particle except in the case 
of rare short-lived recoils associated with the Lamb shift.  However, in the case of an exchange between 
an electron pair, we assume the partner electron breaks spherical symmetry and that a photon exchange 
imparts a momentum of /c to each particle in the pair, away from its corresponding partner but, in a semi-
classical sense, only after the exchange has been successfully completed. The momentum change to either 
particle per unit time associated with the second-order exchange of stimulated-virtual photons between 
them (see Fig. 12 and Fig. 13) is then given by 
 

𝐹~2
𝑓  ħ𝑐
4𝜋𝑑 𝜀

  
𝑑𝜀

exp 𝜀/𝑇 1
 
𝜀
𝑐

ℏ𝑐
2𝜋𝑑

1 exp 𝜀 /2𝜋𝑇
exp 𝜀/𝑇 1

𝑑𝜀


~
ℏ𝑐
𝑑

. 
 

(32) 

The high-energy cutoff, S = ħc/d, is the same value associated with the self-absorptions from the 
previous section. The factor of two on the left is because of the two possible directions for an exchange, 
i.e. from electron (a) to electron (b), and from (b) to (a). The integral in Eq. (32) is reminiscent of that 
used to obtain the Lamb shift in section V but with some additional factors. Switching Eq. (32) into energy 
in units of Tex = ħc/2d gives a compact result for the fine-structure constant to second order 
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2𝜋

1 exp 𝜀 /2𝜋
exp 𝜀 1

𝑑𝜀
𝜀

~
1

137.180.32
  , 

 

(33) 

with a corresponding fundamental unit of charge of (1.6010.002)×10−19 C. The rough uncertainty 
estimate is in analogy with the analogous magnetic moment of the electron where the next order in QED 
adds a term of the order of / [23] smaller than the previous order. 

It is important to realize that the above estimate of the fine-structure constant was obtained with 
adjustments that were made to obtain other QED observables. The form of the near-field corrections is 
based on an ansatz, but the corresponding 2 term was constrained by the anomalous magnetic moment 
of the electron along with other assumptions related to the generation of this magnetism. The 2 upper 
limit in the integration in Eq. (33) was constrained by the dependence of the magnetic moment of electrons 
in hydrogen-like atoms (and ions) on the atomic number of the nucleus. The 1/2  scaling, out the front, 
is due to the two way exchange divided by the 4 steradians available to isotopic emission. The exp() 
term is associated with the time-energy uncertainty principle. There is only one adjustment not previously 
constrained by other QED processes (as outlined in the previous sections), i.e. the nature of the direction-
reversing photon emission. Although introduced in the section on the anomalous magnetic moment of the 
electron and inspired by the calculated properties of black holes [15], the details of the corresponding 
photon rattle were not constrained by the anomalous magnetic moment. However, we claim that allowing 
the possibility of an infinite number of direction-reversing stimulated emissions, as in Eq.s (31) to (33), 
seems natural and leads to the pleasing Planckian factor. This Planckian factor is a general theoretical 
expectation for the quantum emission of photons [16]. It would be somewhat troubling if it was not 
present. The reader should be aware that allowing for an infinite number of direction-reversing stimulated 
emissions and the corresponding Planckian factor is what gives our semi-classical second-order estimate 
of  that is within a factor of ~/ from the known value of ~1/137.036. Given the difference between 
Eq. (33) and 1/137.036 is less than /, it is possible that the difference might be removed by the inclusion 
of higher-order effects (see next subsection).  
The force associated with the semi-classical exchange of stimulated-virtual photons between two 

particles, introduced here, can only generate repulsion. However, an attractive force between oppositely 
charged particles can be obtained by assuming the opposite charge is associated with a hole in a Fermi-
sea of negative-energy particles [17, chap. 5]. 
 

VII.A    Possible higher-order corrections to our  estimate 
 

We do not have a detailed theoretical frame for the higher-order corrections that we seek. However, the 
form of Eq. (33) along with the various assumptions used to obtain it, suggest three likely ways in which 
it could be modified to include higher-order effects. These include modifications to: (a) the scaling of Eq. 
(33); (b) the 2 upper limit in the integration; and (c) the “−1” term in the Planckian factor due to the 
assumption that the direction-reversed photon emission following an exchange occurs with unit 
probability. This subsection does not prove that the suggested higher-order effects are real, but is more of 
a discussion on the possible nature of higher-order corrections that need to be explored further. 

It is well known that second-order and higher-order QED effects increase the size of an isolated 
electron’s magnetism from the Dirac equation result of one Bohr magneton, B, by the factor [23] 
 𝑔

2
1

𝛼
2𝜋

0.328478965 …
𝛼
𝜋

1.1812 …
𝛼
𝜋

⋯  ,   
 

(34) 

where g is the electron’s gyromagnetic ratio that connects spin and magnetism. This relationship 
(including even higher-order corrections) is used to convert measurements of g/2 [or (g−2)/2] into our 
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most accurate inference of the fine-structure constant,   = 1/137.035999206(11) [5]. Here we assume that 
higher-order effects similar to those that increase the electron’s magnetic moment relative to its 
corresponding zeroth-order value also increase the overall scaling of Eq. (33) by 1 + /2  (/)2.  

A weakness in the existing analysis is the assumed sharp high-energy cutoff that leads to the upper limit 
of 2 in the integration in Eq. (33). The value of this cutoff was constrained in the previous section by the 
(Z)2 dependence of the magnetic moment of bound electrons. The second-order nature of the diagram 
used to obtain our picture of the magnetism of electrons (see Fig. 8) means that higher-order effects have 
not been constrained by the analysis in the preceding section, and thus we need to consider the possibility 
that the upper limit in the integration in Eq. (33) has a relative uncertainty of ~ /.  

It is likely that the direction-reversing emission mentioned above will not occur with exactly unit 
probability (even in the case of non-accelerating particles). Without further analysis, we suggest it is not 
unreasonable that the probability of the direction-reversed photon emission following an exchange could 
be a value as low as 1−/. To cover a possible range from unity to the suggested lower limit in the 
preceding sentence, we assume a direction-reversed photon emission probability of 1−(11)/2.  

Incorporating the above discussions we rewrite Eq. (33) as  
 

  
1 𝛼/2𝜋 𝛼/𝜋

2𝜋
1 exp 𝜀 /2𝜋

exp 𝜀 1 1 1 𝛼/2𝜋 
𝑑𝜀
𝜀

/

  .     
 

(35) 

The corresponding solution is  =1/137.06(2) with a universal charge of e =1.6020(2)×10−19 C. The 
uncertainty estimate is dominated by the assumed uncertainty in the probability of the direction-reversed 
photon emission following an exchange. Additional work is needed to justify (or negate) the inclusion of 
the / related terms in Eq. (35).  

Some will believe that, without a strong theoretical backing for the modifications suggested in this 
subsection, the favorable result obtained using Eq. (35) must be viewed as being fortuitous. However, I 
believe the reason for the numerical value of the fine-structure constant is such a longer standing and 
central mystery, there is a place for some educated guessing. Only additional studies of higher-order 
effects within the proposed black hole inspired photon-particle interaction mechanisms will be able to 
distinguish between breakthrough or fortuitous result. This is likely to be a long and laborious task, beyond 
the scope of the present study. I remind the reader that after the development of QED, it took eight years 
to get g/2 to fourth order [34] and an additional thirty-nine years to get it to sixth order [35]. Here I have 
tried a short-cut to obtaining some of the higher-order corrections needed to obtain an accurate result for 
, within the proposed frame work, by assuming a connection between our desired higher-order 
corrections and the well-studied case of the electron’s magnetic moment. We humbly suggest that a 
detailed study of long-wave-length stimulated emission induced by photon exchanges between a pair of 
small black holes might be a fruitful course of action. 
 
 

VIII. Larmor emission 
 

In the previous section, we used a mechanism where charge might be an emergent property associated 
with the exchange of stimulated-virtual photons between a pair of point particles. A value near the 
universal charge is obtained by imagining a direction-reversing stimulated-emission process that causes 
virtual photons to “rattle” between a particle pair. In this speculative model a particle can initiate a photon 
exchange which “jumps” across the separation distance d in a time of d/c. Previously, a weak interaction 
between an electron pair (at large separation distances) was invoked, where the acceleration of the 
particles could be ignored with the direction-reversed emission assumed to be projected back into the 
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source particle with a jump probability controlled by the time-energy uncertainty principle and higher-
order corrections. This would require the particle pair and the exchanging photon(s) to be in some sort of 
entangled state where the direction-reversing stimulated-emission process “knows” which direction to 
send the emitted photon, so it “automatically” finds the partner particle. It is possible that such a process 
might be nearly perfect if both particles are stationary in non-accelerating inertial frames, but would likely 
need modification in the case of accelerating particles. Such a modification might lead to some of the 
stimulated-virtual photon exchanging energy being scattered (or absorbed and re-emitted) to infinity as 
real photons. If true, this would be a new and novel mechanism for Larmor emission that does not require 
the addition of a radiation resistance associated with an electron’s self-interaction.  Here we explore the 
possibility that, in the case of accelerating particles, there is a mismatch in the returning exchanged 
photon’s sizes, as seen by the particle, relative to those associated with the “automatic” reabsorption in 
the case of non-accelerating particles. This mechanism is used here to obtain a result close to the Larmor 
formula for the power of electromagnetic emission from an accelerating electron. 

 
Fig. 15. A depiction of double photon exchange near the electron’s turning point relative to a massive charged particle (see 
text). The bold line represents the stationary massive particle moving through time. 

 

To simplify the calculation of the effects of a classical-like smooth acceleration a of a single electron, 
(with mass m), we place a massive point charge a distance d0 = [ħc/(ma)]1/2 from the electron with the 
same velocity as the accelerating electron at t0 = 0, and then view this process in the rest frame of the 
massive particle. Fig. 15 is a Feynman-like diagram that depicts a double photon exchange between the 
massive charged particle and the electron. We assume the accelerating electron initiates an exchange with 
the massive particle at t0 = 0. This exchange takes a time t1 = d0/c, and could be initiated by either a vacuum-
virtual photon or a stimulated-virtual photon making an exchange from the massive particle to the electron. 
If there was no acceleration, the return time of the direction-reversed stimulated emission, t2t1, back to 
the electron, would be the same. However, the acceleration increases this time to (see appendix A) 
 

𝑡 𝑡
𝑑
𝑐

1 2𝛽 4𝛽 ,    
 

(36) 

to second order, where   = ad0/c2. The corresponding square of d0 relative to the return distance d2 is (see 
Appendix A) 
 𝑑

𝑑
1 4𝛽 4𝛽  . 

 

(37) 

This factor is the relative change in the angular size of the electron as viewed from the origination site of 
the direction-reversed emission, relative to the case of a non-accelerating electron. 

t0
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At the time of absorption at the end of the double exchange depicted in Fig. 15, the accelerating particle 
is moving with a speed of v2/c = 2 + 2 2 (see appendix A). Due to the corresponding Doppler shift, the 
effective reduced wavelength of the absorbed photon relative to its original value is (see appendix A) 
 ƛ

ƛ
1 4𝛽 4𝛽    

 

(38) 

to second order (including relativistic effects). This factor is the relative change in the size of the direction-
reversed photons as viewed by the electron, relative to the case of a non-accelerating electron. Combining 
Eq.s (37) and (38) gives a relative change in the photon-electron effective interaction size, relative to the 
case of a non-accelerating electron of (see Appendix A) 
 ƛ  𝑑

ƛ 𝑑
1 8𝛽 . 

 

(39) 

Notice that to first order the increase in the separation distance cancels with the increase in the exchanging 
photon’s wavelength as seen by the electron. However, to second order the acceleration reduces the 
relative effective size of the direction-reversed-photon electron interaction by 8 2. We assume this 
effective interaction size change causes 8 2 of the direction-reversed photon energy to be scattered 
towards infinity as “real” emission.  

The second-order force from Eq. (32), which includes the direction-reversed stimulated emission, can 
be rewritten as  
 

𝐹~
ℏ𝑐

2𝜋𝑑
1 exp

 𝜀
2𝜋

1 exp 𝜀 exp 𝜀
exp 𝜀 1
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𝛼ℏ𝑐
𝑑
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(40) 

The positive and negative exp() terms in Eq. (40) cancel, and were thus not included in the earlier 
version given in Eq. (32). However, these terms are now needed, with the 1exp() term being due to 
the first (initial) exchanges, while the exp() term is associated with the direction-reversed exchanges 
that can be influenced by the acceleration of the particles. The corresponding electromagnetic power being 
exchanged from the massive charge to the accelerating electron can be expressed as  
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4𝜋𝑑
1 exp
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(41) 

Given the assumptions associated with Eq. (39), the corresponding power associated with the conversion 
of the direction-reversed stimulated-virtual-photon energy into real emission is given by  
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(42) 

This result is ~3.0% higher than the Larmor formula and is perhaps close enough that higher-order effects 
might be capable of reducing the pre-factor of 1.028… on the RHS of Eq. (42) to a value much closer to 
unity. The ability to construct this new picture of Larmor emission adds some credibility to the photon 
rattling process used to obtain an estimate of the fine-structure constant in the previous section. We note 
that introducing the higher-order correction terms used to obtain Eq. (35) along with an additional scaling 
term of 1/(1+4) of unknown origin, gives  
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(43) 
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with the favorable result of P = 0.6666(2)a2ħ/c2, where here  is assumed to be as given by Eq. (35). It 
is unclear if this result is an indication of the true nature of the higher-order corrections that need to be 
applied to Eq. (42), or a highly fortuitous result. We speculate that the higher-order correction associated 
with the 1/(1+4) term is due to some re-absorption of the initial Larmor emission by the particle pair. 
We humbly suggest the a detailed study of stimulated emission induced by a photon exchange between a 
pair of accelerating black holes might be a fruitful course of action. 

An area of difficulty in electrodynamics has been the conservation of energy in the presence of Larmor 
emissions. The problem occurs because the force that generates the initial electron acceleration conserves 
energy locally; i.e. the work done by the applied force goes into changing the state of the electron. 
However, the associated Larmor emissions to infinity then violate conservation of energy, unless a 
radiation resistance is applied to the accelerating electron. This can be done by invoking the second term 
in the electron’s self-reaction force as first determined by Lorentz [36]. In the model presented here, the 
charge of an electron is an emergent property associated with the whole electron, and there is no 
mechanism for subdividing the electron into subunits which can interact with each other in the manner 
used by Lorentz. However, the Larmor emission mechanism suggested here does not need a radiation 
resistance. Instead, the scattering of some of the exchanging photon energy to infinity can conserve energy 
by reducing the acceleration associated with the exchanging photons. 

 
 

IX. Vacuum polarization 
 

We have invoked a picture where electrons are chargeless black holes that can exchange virtual photons 
via emission properties that are not dissimilar to Hawking radiation. With the inclusion of various 
speculative model choices the photon exchanges between, and the self-absorption by, chargeless black-
hole-like objects can be made to deliver many of the properties of electromagnetism at length scales larger 
than the reduced Compton wavelength. However, the above picture with only photon exchanges is 
inconsistent with the known effects of vacuum polarization [19], which cause the electric field around a 
charged particle to be larger than the nominal inverse square law result (without vacuum polarization) at 
short length scales. This effect can be visualized as in Fig. 16 where a highly charged “naked” electron 
repels and attracts virtual electrons and positrons, respectively. Within this picture, the highly charged 
naked electron is screened by the vacuum polarization such that it appears to have the fundamental unit 
of charge if observed on length scales larger than the reduced Compton wavelength, ƛC. For observations 
on shorter length scales the seeable charge of the electron grows logarithmically toward infinity as the 
length scale approaches zero. This is the reason for renormalization and the running of the coupling 
constant in QED. 

The apparent dependence of an electron’s effective charge on the observational length scale can be used 
to discredit the idea of a universal charge via the theory represented by Eq.s (33) and (35). However, there 
is a way around this issue. At high black-hole temperatures, Hawking radiation includes particle emission 
along with photon emission. Therefore, if electromagnetism at large length scales is due to the emission 
and absorption of virtual photons generated by a Hawking-radiation-like emission process, then the 
exchange of electrons should generate effects at length scales less than a few ƛC, where the exchange 
temperature is comparable to or larger than the rest-mass energy of an electron. Given this, in this section, 
we explore a new picture of vacuum polarization where electrons can be evaporated from a real particle 
and absorbed by a nearby real partner particle. However, it is useful to first summarize the effects of 
vacuum polarization from standard theory.  
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Fig. 16. Schematic representation of vacuum polarization. The dashed circle represents a spherical surface with a radius of ƛC 
about the center of a real electron. The dashed-dotted and dashed arcs represent polarized virtual electron-positron pairs 
surrounding the real electron. From outside this dashed circle the electron appears to have the fundamental charge e. At length 
scales d < ƛC, the apparent (or effective) charge is larger, growing logarithmically towards infinity as d approaches zero. 

 

The definitive paper on the potentials induced by vacuum polarization in the case of static fields is still 
the one by Uehling [19] published in 1935. In this seminal paper, Uehling shows that the modification of 
the electrostatic potential between two unit charges, associated with the polarization of the vacuum, is 
given by 
 ∆V 𝑟

V 𝑟
𝛼
𝜋

1 𝑢 exp
2𝑟𝑧

√1 𝑢
𝑑𝑧 𝑑𝑢 , 

 

(44) 

 
where V0(r) is the nominal potential without vacuum polarization, and r is in units of ƛC. In the same 
paper, Uehling also showed that the corresponding limits can be given by 
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(46) 

where  = 0.5772… is Euler’s constant. Eq.s (44) to (46) are displayed in Fig. 17. Please notice that the 
vacuum polarization corrections are relatively small, being less than one part in 104 at a distance of ƛC, 
and are still less than 1% at one hundredth of a reduced Compton wavelength (~ 3 fm). However, these 
changes deliver measurable modifications to electronic based Lamb shifts and dominate the Lamb shifts 
of muonic atoms [37,38]. Also notice that the large length approximation given by Eq. (45) approaches 
Eq. (44) slowly, and is not a good representation of the full result until r is much larger than ten where the 
vacuum polarization is infinitesimally small. Eq. (46) does not accurately represent the full result until r 
is less than ~ 0.05. This small length scale does not significantly contribute to the measurable Lamb shifts 
of light atoms because the corresponding electrons spend very little time at such short distances. This 
means that Eq.s (45) and (46), although interesting and useful for testing numerical methods for evaluating 
Eq. (44), are not directly useful in determining Lamb shifts. 

The shift in atomic energy levels associated with vacuum polarization can be estimated using 
 

∆𝐸 ∆V 𝑟 |𝜓 𝑟 | 4𝜋𝑟 𝑑𝑟   
 

(47) 

where V(r) is the modification of the potential obtainable using Eq. (44). If the radial dependence of the 
central region of the 2s hydrogen wave function is ignored and the nuclear mass is assumed to be infinite 
(close to reality for light electronic systems) then it is straightforward to obtain the analytical result of 
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for the vacuum polarization contribution to the corresponding Lamb shift [19]. This is a convenient result 
to test the accuracy of numerical methods used to solve Eq.s (44) and (47). The change in the potential 
energy associated with vacuum polarization, V(r), can be obtained by multiplying the relative change 
given by Eq. (44) by V0 = ħc/d. Therefore, including the 4 r2dr volume element, a key step in the path 
to evaluating Eq. (47), for electronic hydrogen s-state systems where the wave function length scale is 
much larger than ƛC, is Eq. (44) multiplied by r. The importance of different radii to the electronic 
hydrogen s-state vacuum-polarization Lamb shift components is illustrated by the product of Eq. (44) with 
r in Fig. 18 (dotted curve). Notice that this function peaks at r ~ 0.2, with approximately one half of its 
integral due to r < 1/2, and with little contribution from r > 2.  

 
Fig. 17. Estimates of the potential change due to vacuum polarization: full calculation via Eq. (44) (Uehling, dotted curve); the 
large distance approximation via Eq. (45) (dash-dotted curve); and the short distance approximation via Eq. (46) (dash-double-
dotted curve). The length (radius) r is in units of ƛC. 

 
Fig. 18. Eq. (44) multiplied by r (dotted curve, which may be difficult to make out because it coincides with the dashed curve). 
This illustrates the relative importance of different radii to the calculation of electronic hydrogen s-state vacuum-polarization 
Lamb shift components. The other curves are obtained using the black hole (electron) exchange model introduced in this paper: 
single black hole (electron) exchanges (solid curve); single and double exchanges (dash-dotted curve); single, double, and triple 
exchanges (dash-double-dotted curve); and including all exchange types (dashed curve).  
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 IX.A   Exchange of virtual electrons between a real electron pair 
 

To exploring a new picture of vacuum polarization, we start with Eq. (32), and introduce the idea that a 
pair of real electrons can exchange an electron via an evaporation-like process. This statement appears 
absurd at first, because it violates conservation of charge at both the emission and absorption sites. 
However, assuming charge is an emergent property of an interaction mechanism, the idea that a chargeless 
black hole evaporates another chargeless black hole which is then absorbed by a different nearby 
chargeless black hole does not seem completely unreasonable. Here, we show that a force between two 
real electrons can be obtained via the above mentioned particle exchange mechanism, and this force can 
be made to look remarkably like vacuum polarization at length scales larger than ƛC. The inclusion of 
additional assumptions regarding the exchange of more complex entities (see the following subsection) 
can deliver a force (and potential) that is very close to that of Uehling vacuum polarization at length scales 
down to a small fraction of ƛC. This model is used to estimate its effects on the Lamb shift of hydrogen, 
and muonic hydrogen and deuterium. These results are close to the corresponding effect of vacuum 
polarization, and suggest that there might be a different way of visualizing this process. 

In analogy to the force generated by the exchange of virtual photons [see Eq. (32)], the exchange of 
virtual electrons between a pair of real electrons might be expected to generate a force of the form   
 

𝐹 2 
1

2𝜋
𝑇 ,𝑑 exp 𝑚𝑐 /𝑇

1 exp 2𝑑 /𝜋ƛ
exp 𝜀/𝑇 1

𝑑𝜀
𝜋ℏ

𝑝
ℏ / 𝜋ƛ

𝑑
.   

 

(49) 

 
The exchanging electrons with a rest-mass energy of mc2 are spin ½ Fermions, and thus the modification 
of the Planckian exponential minus 1 term to an exponential plus 1 [15,39]. Being spin ½ Fermions, the 
exchanging particles have two helicity states, similar to the massless spin-1 photons. There is thus no 
overall scaling factor change associated with a change in the number of possible helicity states. The 
exp(mc2/Tex) term is a phase-space reduction factor associated with the rest-mass energy of the 
exchanged particle relative to the corresponding effective temperature. We assume that at and soon after 
the initial evaporation, the exchanging virtual electron has not yet existed for long enough as a separate 
entity to have built up its own virtual photon cloud, and thus behaves as a massless (or near massless) 
particle. By time reversal symmetry the same must apply at absorption. Therefore, for near-field virtual-
electron emission and absorption purposes we assume the relevant wave length is ƛ0 = ħc/, where  is the 
energy of the particle at evaporation, and is the energy in excess of its rest-mass energy in midflight. On 
the time scale of the initial evaporation process, we assume that the system cannot tell which massless 
black hole is the evaporated object and which one is the parent object. This doubles the probability that a 
single black hole (particle) is sent in the required direction to be reabsorbed by the real partner particle 
and is the reason for the factor of “2” out the front of Eq. (49). The momentum p of the exchanging particle 
after it transitions to full mass (midflight) can be expressed as ( + mc2)2 = (pc)2 + (mc2)2 and thus 
 

ƛ
ℏ𝑐

𝜀 1 2𝑚𝑐 /𝜀
 .    

 

(50) 

The T(,d) term is a transmission coefficient associated with the quantum tunneling of the virtual electron 
through the electromagnetic potentials surrounding the real electrons that make up the exchanging pair 
[40,41]. For a macroscopic daughter black hole of unit negative charge evaporating an electron, the 
transmission coefficient is [41] 
 𝑇  exp ℏ𝑐/𝑟 𝑇 . (51) 

There are strong parallels with proton emission from hot nuclei where the decay width is proportional to 
exp(−E/T)exp(−Zħc/rBT) [42] where E is the proton binding energy, Z and T are the atomic number 
and temperature of the daughter nucleus, and rB is the Coulomb-barrier radius which is approximately the 
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daughter radius plus the range of the nuclear force. However, there is no corresponding theory for the 
emission of electrons from very small black holes. As discussed before, the idea that a small black hole 
can contain an effective length scale that is orders of magnitude smaller that the Planck length makes no 
physical sense, and the required relevant barrier radius is more likely controlled by quantum physics, and 
not by the gravitation constant G. In the case of two interacting real electrons separated by a distance d, 
we will soon demonstrate that we can gain a favorable result by assuming that the evaporating virtual 
electrons need to be separated from the parent particle (black hole) by a distance rB = 2d/ before they 
can be viewed by the electromagnetic vacuum as a separate entity. This has parallels with the near-field 
effects introduced in section VI, but on a length scale ~1/137 times smaller. The emission barrier 
corresponding to the above assumption, for our two real electron system, is VB ~ ħc/rB + ħc/d. It seems 
logical to assume that the relevant temperature will be Tex = ħc/2d and rewrite Eq. (51) as T() ~ exp(− 
−2). Including these considerations, and reintroducing the same scaling used to obtained Eq.s (35) and 
(43); and switching to an  in units of Tex, leads to the result  
 

𝐹
𝛼ℏ𝑐
𝑑

1
𝛼

2𝜋
exp 2 4𝛼

𝜋𝛼
exp 

2𝑑
ƛ

1 exp 𝜀 /2𝜋

exp 𝜀 1 1 4𝑑/𝜀ƛ

𝑑𝜀
𝜀

 .    
 

(52) 

Switching d into r (in units of ƛC) gives the force due to electron exchanges relative to the photon 
exchanges as 
 𝐹

𝐹
1

𝛼
2𝜋

exp 2 𝜋 𝑟 2𝛼
𝜋𝛼

1 exp 𝜀 /2𝜋

exp 𝜀 1 1 4𝑟/𝜀

𝑑𝜀
𝜀

 .    
 

(53) 

Some of the factors that make up Eq.s (53) and (35) are summarized in Fig. 19. A stepwise representation 
of Fig. 19(a) is given in Fig. 20.  

Even the classical evaporation of charged particles is made very complex by the presence of a third 
nearby particle, as evidenced by the study of ternary fission [43], particularly in the case of a dynamically 
evolving system like a fissioning nucleus or two closely-spaced real electrons. We cannot hope here to 
solve the many body problem that is the exchange of a black hole between a black hole pair, where the 
exchanging black hole continues to interact with the real pair during the exchange. However, we now 
proceed with scoping calculations that hopefully illustrate some of the complexity of what will need to be 
addressed in a more complete theory. Notice that in Fig. 19(a) we have no higher-order corrections 
associated with the exchanging electron’s midflight interaction with the real electron pair via photon 
exchange. A Feynman-like diagram to illustrate this effect is presented in Fig. 21. Notice that the virtual 
electron is assumed to be born and absorbed with no mass, travelling at the speed of light. The electric 
potential of the exchanging electron along the straight line path between the two real electrons is displayed 
in Fig. 22. We can use Fig. 22 to place limits on the transmission coefficient T(). If the interaction 
potential was equal to the minimum value displayed in Fig. 22, at all locations, then the energy required 
to generate an exchange would be 8Tex higher than mc2. This would diminish the exchanges by a factor 
of exp(−8) with a corresponding effective transmission coefficient of exp(−4). This value is larger than 
the required true value of T(). Scaling the potential, from only one of the exchanging electrons, by 
(1+2/) increases the barrier to the required height but underestimates the required potential in the mid-
flight region (see dashed black curve in Fig. 22). We thus know that the required transmission coefficient 
must be less than exp(− −2). Adding a constant of 4Tex to the potential from only one of the 
exchanging particles gives the correct midpoint potential but overestimates the potential as we move 
towards the chosen particle (see dotted curve in Fig. 22), and thus we suspect that T() > exp(− −4). To 
model the electron exchange correctly one should include more than the potential along a straight line 
path between the two exchanging electrons, because the exchanging particle’s wave-like properties smear 
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out its location, and allows for non-straight line paths. Fig. 23 displays a contour plot of the axially 
symmetric potential generated by the two exchanging real electrons and a possible non-straight-line path 
for the exchanging particle. Without this consideration one would lean towards the lower limit of exp(− 

−4) for the transmission coefficient. However, the lower mid-flight potentials available to the 
exchanging particle (see Fig. 23) favor a higher transmission coefficient more towards the middle of the 
above discussed limits, leading to the expectation of T() = exp(− −(3)) with the uncertainty  < 1. 
The value of 3 will be refined in the next subsection. Including the above update to T() modifies Eq. 
(53) to  
 𝐹

𝐹
1

𝛼
2𝜋

exp 2 𝜋 𝑟 3 ∆ 𝛼
𝜋𝛼

1 exp 𝜀 /2𝜋

exp 𝜀 1 1 4𝑟/𝜀

𝑑𝜀
𝜀

 .    
 

(54) 

We acknowledge that several of the assumptions used to obtain Eq. (54) are unorthodox, but proceed with 
a comparison to Uehling. 

 

 
Fig. 19. A summary of some of the factors contained within Eq.s (53) and (35), for (a) electron and (b) photon exchanges. The 
effective exchange-particle emission rate, R, is shown on the left with the corresponding absorption probability, P, on the right. 
The momentum of the exchanging particle, p; the assumed near-field correction, fnf; and the transmission coefficient squared 
are displayed between the real particle pairs. 
 

Solving for the force given by Eq. (54) (with =0), as a function of r, and integrating it inwards from 
infinity gives the potential (V1) depicted by the solid curve in Fig. 24. Please notice the excellent 
agreement with the vacuum polarization result from Uehling for length scales larger than ƛC. If the 
potential corresponding to Eq. (54) were displayed in Fig. 17 the differences from Uehling would be 
barely visible to the eye. This result supports the choice that, in the case of two interacting particles 
separated by a distance d, the evaporating virtual electrons need to be separated from the parent particle 
(black hole) by a distance rB = 2d/  before it can be viewed by the electromagnetic vacuum as a separate 
entity, and suggests a possible connection between vacuum polarization and the picture presented here 
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where the electromagnetic force between two electrons is generated by the exchange of both photons and 
electrons. In the region from r = 1.5 to 7, the rms difference between Uehling and the present model is 
about two parts per thousand (i.e. ~/). The absolute agreement is obtained by the empirically determined 
barrier radius discussed above, and is not the main interesting result. It is the agreement in the radial 
dependence of the two models at r > 1 over more than six orders of magnitude in V/V0 that is difficult 
to dismiss as a fortuitous coincidence. At a minimum, this result suggests a closer inspection is warranted. 
 

 
Fig. 20. A stepwise representation (a-f) of an electron exchange between a pair of real particles corresponding to the exchange 
displayed in Fig. 19(a). The dashed circles represent an effective minimum size of interacting black holes. As discussed in the 
text, the effective minimum size is much smaller than depicted here.  

 
Fig. 21. A depiction of an exchanging electron that interacts via photon exchange, during the midflight region, with the emitting 
and absorbing real particle pair. 
 

As presented in Fig. 24, the difference between the Uehling vacuum polarization potential change 
(dotted curve) and the corresponding result using the single electron-exchange model (solid curve) at r < 

1.0 may, at first, appear small. However, as demonstrated in Fig. 18, the corresponding Lamb shift 
components are dominated by the vacuum polarization within a distance of ƛC, with the peak in the relative 
potential change  r being near r ~ 0.2. The corresponding relative potential change  r for the single 
electron-exchange model is displayed by the solid curve in Fig. 18. The comparison between the dotted 
and solid curves in Fig. 18 is a better way of comparing Uehling and the single electron-exchange model 
presented here, at least in relation to Lamb shift components due to vacuum polarization. The 
corresponding Lamb shift components for the single electron-exchange model are presented in Table II. 

e− e−

e−
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These are 10-20% lower than the corresponding values from Uehling. This difference is due to the 
growing discrepancy between the Uehling potential change due to vacuum polarization (dotted curve in 
Fig. 24) and Eq. (54) (solid curve in Fig. 24) at short length scales. The possibility that this discrepancy 
is due to the exchange of more complex entities is discussed in a following subsection.  

 
Fig. 22. The electric potential of an exchanging electron along the straight line path between the two real electrons in units of 
Tex (solid curve). The horizontal dashed gray line shows the minimum at 8Tex. The potential from just one of the exchanging 
pair scaled by 1+2/ is displayed by the dashed black curve. The dotted curve is the potential due to a single particle plus 
4Tex (see text). 

 
Fig. 23. Contour plot of the axially symmetric potential (solid and dashed curves) felt by an exchanging unit charge. The 
potential contours are in units of Tex. The dotted line indicates a possible non-straight path for a given exchange.  
 

Table II. The Lamb shift components of: the 2s hydrogen state, ignoring the radial dependence of the electron’s 
wave function with an infinite mass proton; and the non-relativistic 2s-to-2p muonic hydrogen and deuterium atoms 
including the corresponding radial dependence of their wave functions and the finite mass of the nuclei, due to the 
electron-exchange model presented here, and the corresponding Uehling calculations reported in the literature 
[19,37,38]. The exchange of electron clusters is discussed in the next subsection.  

Energy shifts due to vacuum 
polarization 

2s electronic (MHz) 2s-to-2p muonic(meV) 
hydrogen hydrogen deuterium  

single electron exchanges 24.47 166.4 183.8 
including double exchanges 26.16 187.4 207.4 
including triple exchanges 26.61 194.5 215.4 
including all exchangesa 27.130.04 204.70.3 227.20.3 

Uehling 27.129 205.0 227.6 
a Uncertainties assuming =0.2, see Eq. (57) and the discussion regarding Fig. 26 in the next subsection. 
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Fig. 24. As for Fig. 17, but on a smaller length scale, and with the addition of the potential associated with the exchange of 
single electrons (V1, solid curve) via the force given by Eq. (54).  
 

IX.B Exchange of more complex entities between a real electron pair 
 

Due to quantum effects, many particle emission processes do not emit a simple stream of uncorrelated 
single particles, but instead emit particles in correlated clusters. The Hanbury Brown and Twiss effect 
[44,45] is an example of this for photon sources. Here, we assume something similar occurs in the 
electron-exchange mechanism introduced in the previous subsection. No theory exists to help with the 
nature of such a process, so we instead assume that QED can be viewed via both the standard field-based 
description and a new black-hole particle-based description, and that these two pictures give identical (or 
near identical) results. With this assumption, we can infer complex black-hole and electron emission 
processes that give results close to standard theory. The following is a discussion of model choices for the 
evaporation of correlated black-hole entities that succeed in giving a near equivalence between standard 
vacuum polarization and the presented model. 

As discussed in the previous subsection, we accept that in the case of two interacting real small black 
holes separated by a distance d, there is an effect that places a lower limit of 2d/ on the size of the real 
black holes and any exchanging black-hole related entities. This limit can be viewed as a substitute for 
the Schwarzschild radius, which becomes unphysically small for micro black holes. The physics of this 
limiting size may be related to the Lamb shift where the fuzziness of the electron-photon interactions is 
also a bit less than 1/137th the characteristic size of the system. We imagine the evaporation of a correlated 
pair of black holes from a single black hole proceeds as depicted in Fig. 25. At first the evaporated pair 
(depicted by a pair of black dots joined by a bar) appears on the surface of the parent black hole. At this 
stage the newly formed black hole pair has not had time to interact with the electromagnetic vacuum 
outside the parent black hole and is thus assumed to initially behave as a massless spin-1 boson with two 
helicity states, like the photon. However, as viewed by the emitting and absorbing real particles, the 
initially evaporated massless black hole pair is a flat bar-like object with a twofold (180) azimuthal 
symmetry (both black holes are assumed to be identical). This gives a twofold decrease in the azimuthal 
phase space relative to the case of single black hole emission. This drop in azimuthal phase space is 
assumed to drop the evaporation rate by a factor of two, relative to the case of a single black hole 
evaporation as presented in the previous subsection. In analogy with the case of photon evaporation, 1/2 
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of the initial boson emissions are assumed to be immediately self-absorbed. However, unlike the photon 
case, the small transmission coefficient means the vast majority of the self-absorptions are not followed 
by a re-emission. This causes a reduction of ~1−1/2 in the evaporation rate of black-hole pairs relative 
to the photon case (higher-order corrections exist). After exiting from the parent, the black hole pair starts 
interacting with the electromagnetic vacuum outside the parent, and establishes its own identity with its 
own rest mass. Given that the black hole pair is contained within a space not directly accessible to the 
electromagnetic vacuum, the pair behaves as a single electromagnetic object with a single unit of charge 
but with twice the rest mass during the midflight region. In analogy to the case of single black hole 
evaporation, only a fraction f = exp(−2mc2/Tex) of the black hole pairs survive the transition to full rest 
mass. The modification of Eq. (54), with the inclusion of these assumptions, gives the force associated 
with the exchange of black hole (electron) pairs between two real electrons as  
 𝐹
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𝜀

 ,    
 

(55) 

with the multiplicity of the exchanging clusters j = 2. The factor of two symmetry term from Eq.s (52) to 
(54) is removed because when evaporating a particle cluster, the system can tell the difference between 
the “single” black hole parent and the evaporated daughter object.  

 
Fig. 25. The evaporation of a black hole pair from a parent black hole. In (a) the initially massless pair (depicted by a pair of 
black dots joined by a black bar) in born. By (b) the new pair has become a separate entity (see text). 

 
Eq. (55) can be tested by comparing its consequences to Uehling minus V1 (see Fig. 24). This is done 

in Fig. 26. Vi is the potential corresponding to the force Fi. If V1 is correct then Uehling minus V1 would 
contain the effect of all types of black hole exchanges with two, and possibly more, black holes (particles). 
The dotted and upper-black (V1) curves (in Fig. 26) are the relative potential changes associated with 
vacuum polarization and single-electron exchanges, as displayed in Fig. 24. The solid black curve labelled 
V2 displays the corresponding result using the force due to the exchange of black-hole pairs as given by 
Eq. (55). This should be compared to the dashed curve that is the difference between Uehling and V1. 
Notice that V2 and (Uehling minus V1) approach each other as r increases beyond ~ 0.6. This is an 
extraordinary result because it tells us that V1 approaches Uehling, with increasing r, in a manner where 
their small differences are close to V2. This implies that at r > 0.6 there is little contribution from exchanges 
containing more than two black holes. The difference between the V2 and (Uehling minus V1) at r < 0.6 is 
perhaps due to the exchange of particle clusters containing three or more black holes. The dash-dotted 
curve in Fig. 18 shows the effect of including both single and double electron exchanges. The 
corresponding Lamb shift components are listed in Table II. 

Continuing with the same logic, we assume clusters of three black holes behave as Fermions and can be 
exchanged in a manner similar to the pairs discussed above. The force due to the exchange of these triple 
clusters is 
 𝐹
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(56) 
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with the multiplicity of the exchanging clusters j = 3. This equation can be tested by comparing its 
consequences (V3, solid curve in Fig. 26) to Uehling minus (V1 + V2) (dash-dotted curve). Notice that 
these curves appear to approach each other as r increases beyond ~ 0.5. This implies that at r > 0.5 there is 
little contribution from exchanges containing more than three black holes. The difference between V3 and 
Uehling minus (V1 + V2) at r < 0.5 is likely due to the exchange of particle clusters containing four or more 
black holes. The dash-double-dotted curve in Fig. 18 shows the effect of including single, double, and 
triple black hole exchanges. Notice that the cluster-exchange picture is converging towards Uehling as the 
complexity of the exchanges is increased. The corresponding Lamb-shift components are listed in Table 
II, and are 2-5% lower than the corresponding correct values.  

 
Fig. 26. Estimates of the potential change due to vacuum polarization: Uehling via Eq. (44) (dotted curve) and the 
corresponding result associated with the exchange of electron singles (V1, solid curve); doubles (V2, solid curve); and triples 
(V3, solid curve) (all with  = 0). The dashed and dash-dotted dashed curves display the difference between Uehling and V1, 
and Uehling and (V1 + V2), respectively. For an explanation of the importance of the dashed and dash-dashed curves, please 
see the text.  
 

Please note that the comparison between the solid V2 and V3 curves and the difference curves (dashed 
and dash-dotted) in Fig. 26 becomes meaningless below V/V0 ~ 106, given that we suspect there are 
disagreements between Uehling and the presented model at about the two parts in a thousand level (i.e. 
with a relative difference of ~/). This causes the difference estimates in Fig. 26 (dashed and dash-dotted 
curves) to have large relative uncertainties when they are more than two-to-three orders of magnitude 
below the Uehling result. The favorable results displayed in Fig. 26 are obtained with  in Eq.s (54) to 
(56) set to zero. The results at and above r = 0.5 can be used to restrict  to be less than 0.2. 

Following the above logic, we can express the force due to the exchange of clusters of j black holes as  
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(57) 

 
where S is 2 for single black-hole exchanges (j = 1), and unity for all other exchange types; the probability 
of self-absorption is Psa=1/2 for even j, otherwise zero; in the case of the  sign the top symbol is for 
odd j (Fermions), and the bottom symbol for even j (Bosons). The force associated with photon exchange 
can be obtained by setting T2 = 1, setting the 2 j term to 2, all other js to zero, and Psa to zero. The 
vacuum polarization force including all black-hole exchange types can be obtained by summing the Fj in 

1.E‐06

1.E‐05

1.E‐04

1.E‐03

1.E‐02

0.0 0.5 1.0 1.5


V
(r
)/
V
0
(r
)

r

102

103

104

105

106

V1

V2
V3

Uehling V 1V 2



LA-UR-21-xxxxx 

36 
 

Eq. (57) over all j from 1 to . The corresponding relative potential charge × r (dashed curve) is compared 
to the corresponding Uehling result (dotted curve) in Fig. 18. The rms difference between the relative 
potential differences between Uehling and the presented black hole cluster-exchange model is only / 
(two parts per thousand) across the range from r = 0.05 to 7. The corresponding Lamb shift components 
are listed in Table II. The Uehling vacuum polarization and black-hole-exchange model Lamb shift 
components differ by ~0.1%. The convergence of the presented black-hole exchange model towards 
Uehling is highlighted in Fig. 18. Only by including the correlated exchanges (black hole clusters), can 
the correct force be obtained at short length scales at r < 1. The number of particle units per cluster grows 
logarithmically as the distance between the exchanging pair goes to zero. This has similarities to standard 
QED where the high electric fields as r approaches zero are maintained by the coordinated effort of a large 
number of virtual electron-positron pairs.  
 

IX.D Vacuum polarization summary  
 

The combination of simple terms in Eq. (57) accurately mimics the properties of vacuum polarization. 
This could be an example of an apparent explanation (or fit) by including a number of simple assumptions 
that were chosen, in part, because of the corresponding favorable outcomes. These assumptions are:  

(1) In a similar fashion to photon exchanges, there is a force between two closely spaced real electrons 
due to the exchange of virtual single black holes (s = 1/2 electrons) given by Eq. (54). There are 
five assumptions that transform the photon exchange force into Eq. (54): (a) a sign changes due to 
the Boson to Fermion exchange switch; (b) the exponential reduction factor associated with the 
rest-mass of the exchanging particle; (c) near-field effects are calculated using a wavelength ƛ0 = 

ħc/, where  is the energy of the exchanging particle in excess of its rest-mass energy; (d) a factor 
of two due to the system not being able to track which black hole is the parent and which is the 
evaporated daughter; and (e) the estimation of a transmission coefficient using an effective barrier 
radius of 2d/. These modifications are partially justified by a comparison of this picture with 
standard vacuum polarization at distances d > ƛC (see Fig. 24); and 

(2) There is a force between two closely spaced real electrons associated with the exchange of virtual 
clusters of j black holes (electrons). To deal with these multiple-particle exchanges, only three 
additional assumptions are needed: (a) even j clusters behave as s = 1 Bosons with only two states 
of helicity (like photons), while odd j clusters are considered s = 1/2 Fermions; (b) there is a 
reduction factor of 1/j associated with cluster evaporation; and (c) a further reduction factor of 
11/2 for Boson evaporation, associated with these emissions having a self-absorption 
probability of 1/2. These modifications are partially justified by their ability, in conjunction with 
(1), to closely match the properties of vacuum polarization down to distances much smaller than 
ƛC, and give Lamb shift components that differ from those due to Uehling vacuum polarization by 
less than a relative change of /. 

A summary of several estimates of relative potential changes due to vacuum polarization is presented 
in Fig. 27. The dotted curve is the standard vacuum polarization result from Uehling, and the dash-dotted 
and dash-double-dotted curves are the corresponding large and small length scale limits as given by Eq.s 
(45) and (46). The dashed curve is our result from the presented virtual black hole and virtual black-hole 
cluster exchange model. Its ability to follow the standard vacuum polarization result over ten orders of 
magnitude in relative potential change, across four orders of magnitude in distance, is stunning. The 
agreement is at a level of ~/ in the region of r = 0.05 to 7. This level of agreement deteriorates slowly 
as we move to smaller and larger length scales but is still only a few percent at the edges of Fig. 27. The 
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ability to expand on the photon exchange concept and obtain a new picture of vacuum polarization adds 
some credibility to the assumptions used to obtain estimates of the fine-structure constant in section VII. 

 
Fig. 27. Various estimates of relative potential changes due to vacuum polarization: the vacuum polarization result of Uehling 
(dotted curve which may be difficult to see because it coincides with the dashed curve); the corresponding large and small 
length scale approximations (dash-dotted and dash-double-dotted curves); and the result from the present virtual black hole 
and virtual black-hole cluster exchange model (dashed curve). The solid curve shows the corresponding result with the 
exchange of only virtual single black holes (i.e. without any cluster exchanges). 
 

Ignoring the possibility of a fortuitous result via many selective model choices, the results presented 
here suggest vacuum polarization might be mappable into the exchange of virtual single black holes 
(electrons) and virtual black-hole clusters between interacting real particles. At first, it might appear as 
though the proposed new picture has little in common with the standard view. However, on a closer look, 
perhaps the new picture is not that dissimilar. In the standard picture, virtual electron and positron pairs 
are polarized with the virtual electrons pushed away from a central negative charge, while the virtual 
positrons are pulled inwards. Therefore, if one imagines a sphere around an electron at a distance d then 
there will be an outward flux of virtual electrons through this sphere. In the case of an isolated (single) 
electron, the outward flux would be balanced by the inward flux of returning virtual electrons that need 
to annihilate with the virtual positrons. The size of the outward going virtual-electron flux will increase 
with decreasing d. In the case of an interacting real electron pair, virtual electrons moving away from one 
of the real electrons might annihilate with a virtual positron near the partner real electron. This exchange 
of a virtual electron can be viewed as evaporation from one of the real electrons and absorption by the 
corresponding nearby real partner as depicted in Fig. 28(a). At d > ƛC, one might expect the outward going 
electrons from a single real particle to be rare and relatively independent of other emissions. At smaller 
length scales, correlations in the outgoing electron flux would be expected, with these correlations 
increasing with decreasing d. The cylindrical structures (tubes) in Fig. 28 are an attempt to acknowledge 
that on short length scales real particles are intrinsically fuzzy objects containing a surrounding sea of 
virtual photons and particles. We suggest this sea has thermal-like properties, and can evaporate and 
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absorb virtual electrons and complex electron clusters in a manner that is similar to other hot objects. In 
Fig. 28(a) we see that the depicted exchange cannot be completed unless there is some type of coordination 
between the remaining unpaired electron and positron. If this leftover pair finds each other, we obtain Fig. 
28(b). This is the QED one-loop vacuum polarization diagram. Perhaps processes like these are being 
partially mimicked by Eq. (57). In the standard picture of vacuum polarization, the high electric fields at 
r << 1 are maintained by the coordinated effort of multiple virtual electron-position pairs. This may be 
paralleled in the new picture where the force at short length scales is generated by the exchange of 
correlated black holes (electrons) in clusters.  

 
Fig. 28. (a) A depiction of a single electron exchange between two real electrons. (b) We force the leftover (spare) electron-
positron pair from (a) to find each other, thus forming an electron loop. The cylindrical structures (tubes) acknowledge that at 
short length scales real electrons are intrinsically fuzzy objects which contain a complex sea of virtual photons and particles. 
 
 

X. Summary 
 

By assuming that vacuum-virtual photons can stimulate an isolated small black hole to emit additional 
virtual photons with a cross section of ƛ2, and invoking a high-energy cutoff of 2mc2 beyond which 
vacuum-virtual photons no longer interact with the particle, the additional energy associated with the 
cloud of stimulated-virtual photons surrounding a massless particle is on average equal to mc2. This virtual 
photon emission mechanism is essentially the same as Hawking radiation but for L = 0 unphysical photon 
emission instead of L > 0 real emission.  The storage of the rest energy in the surrounding cloud of virtual 
photons is similar to the storage of the rest energy in the surrounding classical electric field, but without 
the infinities associated with classical point particles. The high-energy cutoff of 2mc2, in conjunction 
with the semi-classical low-energy Lamb-shift cutoff of ~mc2 [17] and an absorption (with recoil) cross 
section of ƛ2, leads to a calculated hydrogen Lamb shift of ~1000 MHz. This apparent success supports 
the idea that photon-electron interaction cross sections of ƛ2 and ƛ2 play an important role in QED 
processes. The inclusion of near-field effects and other model choices gives the anomalous magnetic 
moment of the free electron. These choices are partially justified by their ability to give the correct (Z)2 
dependence of the magnetic moment of electrons in hydrogen-like atoms with the assumed self-interaction 
high-energy cutoff of S = ħc/d.  

An expression for the fine-structure constant can be obtained if electromagnetism is assumed to be 
associated with the exchange of stimulated-virtual photons between particle pairs. Including estimates of 
near-field effects that give the electron’s magnetism, and direction-reversing stimulated emission inspired 
by the calculated properties of black holes by others [15], leads to a force between particles that defines a 
fundamental unit of charge of (1.6010.002)1019 C with a corresponding fine-structure constant of  = 
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1/(137.180.32). Additional, but more speculative assumptions about higher-order corrections, give an 
inverse fine-structure constant −1 = 137.060.02 with a fundamental unit of charge of 
(1.60200.0002)1019 C. A minor modification in the way that direction-reversed stimulated photons 
interact with accelerating electrons gives a new picture of Larmor emission that does not require a 
radiation resistance. 

An expansion on the force generated by the exchange of virtual photons to include the exchange of 
virtual electrons gives a new picture of vacuum polarization. This picture contains multiple plausibility 
arguments based on intuition obtained via the study of evaporation and absorption by other hot objects. 
Applying these concepts to vacuum polarization is highly unorthodox. However, the level of agreement 
between Uehling and the presented model shown in Fig. 27 suggests additional investigations into the use 
of thermal-like evaporation to mimic QED processes is warranted. If the presented course of action turns 
out to be fruitful then the connection between electromagnetism and the statistical theory of particle 
evaporation and absorption is likely to lead to additional findings. 

The closeness of the presented model calculations to experiment and standard QED theory does not 
prove the model choices made here are correct because in many cases these choices are based on the 
favorable outcomes generated. The main testable outcomes from the present study are the suggestions 
that: 

(1) The rest energy of very small chargeless black holes is due to stimulated-virtual photon emission 
generated by the interaction of these black holes with virtual photons associated with the 
electromagnetic vacuum. This interaction has a high-energy cutoff of unknown origin. 

(2) The above interaction is divided into two components. The dominant part is a relatively simple 
interaction whose only outcome is the above-discussed stimulated-virtual photon emission. A 
component ~137 times weaker than the dominant interaction generates a short time movement or 
blurring of the black hole by a length scale of ~ ƛC. 

(3) For stimulated-virtual photons born a finite distance d, from a future interaction location, near-field 
effects reduce the above-discussed interactions by a factor of 1−exp(−2d2/ƛ2), with these 
interactions having a high-energy cutoff of ħc/d. 

(4) Virtual black holes in the presence of a pair of real charged particles separated by a distance d, must 
be separated from the real particles by a distance larger than 2d/ before they can be viewed by 
the electromagnetic vacuum as a separate entity. 

It is possible that these suggestions could be tested by a detailed theoretical study of the interaction of 
photons with small black holes and black hole pairs. The long wavelength exchange of Hawking radiation 
between a pair of black holes will be of particular interest. 

Given the results presented here, we feel that we cannot currently dismiss the possibility that the fine-
structure constant and several other QED results are obtainable via a far-field photon-electron interaction 
cross section of ƛ2 with near-field effects and direction-reversed stimulated emission. A summary of our 
reverse-engineered semi-classical results is presented in Table III and Fig. 29. Additional work on photon-
particle near-field effects, direction-reversing stimulated emission, black-hole-electron interactions, and 
higher-order effects is needed to confirm or negate the semi-classical suggestions made here. If the semi-
classical choices made here can be justified by detailed calculations, then an understanding of the 
numerical value of the fine-structure constant may emerge. Despite the speculative nature of several of 
the arguments used to obtain a calculated value near to the known fine-structure constant, the present 
study suggests that charge is an emergent property generated by a simple interaction mechanism between 
point-like chargeless particles (black holes) and the vacuum state. 
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Table III. Summary of the semi-classical results obtained here, and a comparison with QED. 
Observable Simple semi-classical results QED 

         Reason Formula 
Rest energy Emission and self-

absorption of stimulated-
virtual photons 

𝐸
2𝜀
𝜋ℏ

𝑡 exp 2𝜀𝑡/ℏ 𝑑𝑡 𝑑𝜀 𝑚𝑐  
 

Lamb shift 
(excluding vacuum 
polarization and the shift of 
the p state)  

Absorption and re-
emission of vacuum-
virtual photons 

∆𝐸 ~
𝛼  ln 2𝜋/𝛼

6𝜋
 𝑚𝑐  

~1000 MHz 

 
1072 MHz 

 
Anomalous magnetic 
moment of the free 
electron 

Stimulated emission and 
self-interaction including 
near-field effects, following 
the absorption and re-
emission of vacuum-virtual 
photons 

 
𝑔 2

2
𝛼

2𝜋
 

(second order) 

 
𝛼

2𝜋
 

 

(second order) 

Magnetic moment of 
the electron in 
hydrogen-like atoms 

Stimulated emission and 
self-interaction including 
near-field effects and system 
size 

𝜇 1𝑠
𝜇

~1
𝛼

2𝜋
 𝛼 𝑍

3
1

2𝑚
𝑀

   1
𝛼

2𝜋
 𝛼 𝑍

3
1

3𝑚
2𝑀

  

Fine-structure constant Exchange of stimulated-
virtual photons including 
near-field effects and time-
reversing stimulated 
emission 

  
1 𝛼/2𝜋

2𝜋
1 exp  𝜀 /2𝜋

exp 𝜀 1 1 1 𝛼/2𝜋
𝑑𝜀
𝜀

 

 
  = 1/137.06(2) 

 
~1/137.035999206(11) 

(experiment) 

Larmor emission Modification to the 
interaction of direction-
reversed emission due to 
particle acceleration 

𝑃
𝑎 ℏ
𝑐

2
𝜋

1 𝛼/2𝜋
1 4

1 exp  𝜀 /2𝜋 exp 𝜀
exp 𝜀 1 1 1 𝛼/2𝜋

𝑑𝜀
𝜀

 

0.6666 2 ∙ 𝛼𝑎
ℏ
𝑐

  

 
2
3
∙ 𝛼𝑎

ℏ
𝑐

   

Vacuum polarization Including virtual electron 
exchanges 

See Eq. (57) See Fig. 27 and Table II 

 

 
Fig. 29. Summary of the connection between assumptions (rectangles) and results leading to a numerical estimate of the fine-
structure constant. 
 
  

near-field effects

direction-reversed stimulated emission
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Appendix A.  Some key proofs related to the Larmor emission section 
 

The mathematics required to follow the presented work is of a rather elementary level compared to the 
needs for understanding standard QED. However, the algebra for a few of the Larmor emission proofs is 
a little tedious. To facilitate the reader through the more tedious algebra, a few of the proofs are presented 
here in greater detail. 

As per Fig. 15 we assume a stationary but accelerating electron initiates an exchange with a stationary 
massive particle of unit charge at a distance d0. This initial exchange takes a time t1 = d0/c to complete. In 
this time, the electron is displaced by at1

2/2, and thus at t1 the massive-particle-to-electron separation 
distance is d1 = d0(1+ad0/(2c2)). After t1 the electron’s location is given by d(t) = d1+v1t+at2/2, where here 
t is the elapsed time after t1, and v1 = at1 = ad0/c. At t1, a direction-reversed photon is sent back from the 
massive particle towards the electron. We define t2 to be the time at the completion of this second 
exchange relative to the time of initiation of the first exchange. The time to complete the second exchange 
t = t2t1 can be obtained by solving d2(t) = ct = d1 + v1t + at2/2, i.e. 0 = (a/2)t2+(v1c)t+d1. The 
corresponding solution is 

     ∆𝑡 1 1  

             1 1  

             1 1 1 2𝛽 𝛽 2𝛽 𝛽 ⋯   where   = ad0/c2 

             1 1 1 2𝛽 3𝛽 ⋯  

             1 1 / 1 2𝛽 3𝛽 ⋯  

             1 1 2𝛽 5𝛽 8𝛽 ⋯  

             1 1 2𝛽 5𝛽 8𝛽 2𝛽 5𝛽 ⋯ 2𝛽 ⋯ ⋯   

             1 𝛽 𝛽 3𝛽 7𝛽 ⋯   

             𝛽 2𝛽 4𝛽 ⋯ 1 2𝛽 4𝛽 ⋯                                                                  (36) 

and therefore  
             𝑑 𝑐∆𝑡 𝑑 1 2𝛽 4𝛽 ⋯                                                                                       
             𝑑 𝑑 1 2𝛽 4𝛽 ⋯  =𝑑 1 4𝛽 12𝛽 ⋯    

             
⋯

1 4𝛽 12𝛽 ⋯ 4𝛽 12𝛽 ⋯ ⋯  

1 4𝛽 4𝛽 .                                                                                                                (37) 
In the case of an accelerating electron, at the time of the reabsorption of the double exchange by the 

electron, the electron will have a velocity v2, away from the massive stationary particle. The frequency f2 
of the reabsorbed photon, as seen (observed) by the reabsorbing electron, will be Doppler shifted to a 
lower value than the frequency as seen by the source f0 with 

     𝑓 𝑓 ∙ 𝑓 1 ⋯ ∙ 1 ⋯ 



LA-UR-21-xxxxx 

42 
 

         𝑓 1 ⋯ ∙ 1 ⋯  

         𝑓 1 ⋯  

The velocity v2 is given by v1+at, and with the results obtained above we get 

         𝑣 1 2𝛽 4𝛽 ⋯ 𝑐 2𝛽 2𝛽 ⋯   and thus 

         𝑓 𝑓 1 2𝛽 2𝛽 ⋯ 2𝛽 2𝛽 ⋯ ⋯ 𝑓 1 2𝛽 4𝛽 ⋯  

         𝑓 𝑓 1 4𝛽 12𝛽 ⋯  

         
⋯

1 4𝛽 12𝛽 ⋯ 4𝛽 12𝛽 ⋯  

                  1 4𝛽 4𝛽 ⋯                                                                                                           (38) 
The effective size of the photon-electron interaction is modified by the electron’s acceleration by the factor 

         1 4𝛽 4𝛽 ⋯ 1 4𝛽 4𝛽 ⋯  

                       1 4𝛽 4𝛽 ⋯ 4𝛽 16𝛽 ⋯ 4𝛽 ⋯ 
                     1 8𝛽 ⋯  .                                                                                                              (39) 
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